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Starting from the large-N power counting which suggests that the baryons are @CD
solitons, the authors derive an exact large-+ equation identical to the so-called bootstrap
condition of static strong-coupling. theory. This equation determines the group structure
of the baryon multiplets at N—~.. One solution is the standard nonrelativistic quark model.

PACS numbers: 12.35.Eq, 11.30.Na, 12.40.Ff

Some time ago Witten' suggested that baryons
can be considered as solitons in the large-X lim-
it of QCD. This was partially realized in more
recent works. ' These works suggest that the
large-N l.imit could be studied as a sort of semi-
classical approximation where 5 is replaced by
1/N. However, it seems impossible to derive
from first principles a concrete baryonlike solu-
tion, which is needed as the starting point of the
corresponding 1/N expansion. Fortunately we
already know one example of a theory where the
essential results of semiclassical expansion were
derived without making use of the cl.assical. so1.u-
tion. This is the so-called static strong-coupling
theory of the meson-nucleon interactions. Many
wel1. -known physicists' have attached their names
to the corresponding semiclassical expansion.
On the other hand most of the resul. ts were later
derived by Goebel by means of an S-matrix boot-
strap strong-coupling approach, in which no con-
cept of fiel.d appears, not to mention any classi-
cal solution. Looking back at this approach"
and in view of later studies of the strong-coupling
theory' and of the more recent developments of
semiclassical methods in general, we realized
that Goebe1. 's viewpoint is certainly quite general.

It provides an alternative route to semiclassical
expansions where no classical solution is needed,
which we plan to follow in this paper to study the
large-N QCD baryon dynamics.

We shall follow closely the method of Ref. 5,
where one of the essential ingredients is the be-
havior of various physical quantities in the strong-
coupling limit. We now point out that this behav-
ior is precisely the one which fo11ows from the
general arguments of Witten' in the large-N QCD.
First the baryon mass is proportional. to N so
that we can use the nonrel. ativistic kinematics
for baryons. On the other hand the meson mass
is finite and mesons are fully relativistic. We
further need the order of magnitude of the meson-
baryon Yukawa coupling. By a simple quark
counting one can-see that the corresponding non-
rel. ativistic overlap integral. of meson-baryon-
baryon wave functions is of order ZK. This
agrees with the standard behavior of the meson-
soliton vertex in the semiclassical expansion. '

Consider the meson-baryon scattering: "n"
+ "i"—"P"+ "j",where n and P indicate the in-
itial and the final. mesons, respectively, while i
and j are baryon states. The dispersion relation
of the corresponding scattering amplitude can be
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written as

where A is the l.eading term of A. . Because of
the unitarity relation, TB "(v) is of order l.
Thus,

(4)

This equation is known to be the static bootstrap
equation, ~ since it was derived in the static model
by generating the baryon resonance pol.es from
the driving force due to the exchange of the very
same one-particle states. '

Equation (4) is an exact equation for QCD in the
large-N limit. We show, fol. lowing Ref. 5, how

it can be used to obtain the baryon multiplet
structure.

Let us cal.l K the group of invariance of static
baryon dynamics, i.e., SU(2),~;„SSU(n)n„„.
We note that in the semiclassical method K is
the group of symmetries which are broken by the
classical sol. iton solution. The baryon states form
a basis of a unitary representation of K. Let
X, be the infinitesimal generators of this repre-
sentation. Then

[x., x,]= c., 'x, , [x., x„]=D(&).'g„
[a„,a,]= o,

where D(a)„ is the infinitesimal generator of
the representation to which the mesons belong.

(5)

where e is the meson energy, M,. is the mass of
baryon', and R,,~ and R, ,„' are the baryon recoil.
corrections which are of order 1/N. The matrix
element (A„)", which specifies the meson-baryon
coupling, is of order 1 according to our previous
discussion. T& '~(v) includes all the scattering
terms and meson poles. It is at most of order 1
according to Kitten's discussion, which agrees
with the general features of semielassieal ex-
pansions about soliton solutions.

In general. we ean write

M, = M+5M, ,

where M is of order N. Since 5M,. is the col.lec-
tive excitation energy of a very heavy object of
mass M, it is of order 1/M —1/N. This is of
course consistent with the sol.iton picture.

%e are now in a position of repeating the dis-
cussion of Ref. 5. To the leading order N we ob-
tain

Altogether formula (5) gives a representation of
the Lie algebra of the semidirect product G = K
& 7.' where the Abelian group T is generated by
A . Since T is Abelian and t"&7', G is noncom-
pact and hence its unitary representations are
infinite dimensional. The number of baryon states
is therefore infinite.

There are two ways to obtain the representa-
tions. The first one is the induced representation
method' which is natural. ly rel.ated to the sol. iton
picture where the matrix A is given by the clas-
sical solution, Fourier transformed over the
group E. The second method, which we follow
after Bef. 5, is based on the notion of group con-
traction. "

In the present case if we consider only pseudo-
scal.ar mesons interacting in I' states with bar-
yons, the matrix A belongs to the adjoint rep-
resentation both of the ordinary spin group and

of the flavor group SU(n). Then 6 is obtained by
contraction from SU(2n). Accordingly a repre-
sentation of G is obtained from an infinite-dimen-
sional. representation of SU(2n). By reducing
this irif inite-dimensional. representation. accord-
ing to SU(2) SSU(n) we obtain a tower of SU(n)
baryon mul. tiplets.

At this point one can make contact with the
naive nonrel. ativistic quark model as fol.lows. The
representations of SU(2n) are specified by Young
tableaux which are labeled by 2n —1 integers:

Let us choose X, = X, X,
3 ~ 2„,= 0, which corre sponds to the

representation of SU(2n) by a completely symmet-
ric tensor with ~ indices. The reduction of this
representation to SU(2) t3SU(n) is exactly the
same as the reduction of symmetric state of X

nonrel. ativistic quarks. To obtain the represen-
tation of G we have to let X be infinite and if we
identify X = X we obtain exactl. y the naive non-
relativistic quark model for large-Ã QCD bar-
yons.

In particular if we include uy, down, and strange
quarks, G is obtained by the contraction of SU(6)
for N =~. Por physical. N = 3 choosing the com-
pletely symmetric representation (3,0, 0, 0, 0) we

recover exactly the SU(6) quark model. " For
completeness we note that one can also treat in-
teractions through any partial wave. ' Regge-type
towers of baryon states come out.

88



V()LUME 52, NIJMHER 2 PHYSICAL REVIEW LETTERS 9 JANUARY 1984

Finally, if one neglects the recoil by setting
R = R ' = 0 in formula (1), one can derive mass
formulas ' in terms of the Casimir operators
of K by considering expression (1) at order zero
in N. Here, QCD being fully relativistic, we de-
part from the static strong-coupling theory. For
large N, the recoil is nonnegligible. By taking
it into account one may derive useful information.
This is beyond the scope of the present paper but
neglecting the recoil. one recovers, in particular,
the static results recently derived from the
Skyrme solution. '
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gress-Board of Higher Education Faculty Re-
search Award No. 6-63264.

Note added. —The relation between large-N
QCD baryon dynamics and strong-coupling theory
was al.so noticed by Bardakci" by use of the chi-
ral-soliton model of baryons.
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