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A.pproaches to the Tricritical Point in Quasibinary Fluid Mixtures
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When the Griffiths theory of tricritical points is extended to the eighth power of the order
parameter, certain composition differences preserve the limiting behavior far from the tricrit-
ical point, an unexpected result that had been overlooked in earlier van der Waals model cal-
culations. New calculations show that, along a path of constant tricritical composition and
density and increasing temperature, a quasibinary system goes from two phases to one at the
tricritical point, with no appearance of the third phase.

PACS numbers: 64.60,Kw

Simple phenomenological theories of tricritical
phenomena, e.g. , that of Griffiths, ' have proved
very useful in understanding the limiting behavior
as the tricritical point is approached. However, our
measurements and our model calculations both sug-
gest that for some properties the limiting behavior
is found only very close to the tricritical point. In
particular the S-shaped three-phase coexistence
curves that we have measured for quasibinary hy-
drocarbon mixtures, even those closest to the tri-
critical point, are rather asymmetric, whereas the
simple theory predicts that such plots of tempera-
ture versus order parameter should be symmetric
with respect to a twofold rotation around the mid-
point. Recently we reported some model calcula-

~

tions using the van der Waals equation that also
showed this asymmetry and we were able to deduce
a power-series form for the corrections to the lirnit-

ing behavior at the upper and lower critical end
points. This encouraged us to look for a more gen-
eral mean-field derivation.

Griffiths' has shown that the simplest expression
(for the molar Gibbs free energy G ) that yields
tricritical behavior is one that is sixth order in the
order parameter, which we have taken to be the
difference between the mole fraction x and its tri-
critical value x, , 4x =x —x, . In order to find the
nature of deviations from limiting behavior we have
extended the free-energy expression to eighth or-
der:

G (5),Tp, hx)=ao+a~(hx)+a2(hx) +a3(hx) +a4(hx)
+ a5(hx )'+ (hx) 6+ a7(hx)'+ a, (Ax)'+. . . ,

where the coefficients a„are smooth functions of three independent field variables, the temperature T, the
pressure p, and (, a measure of the binary interaction. (The fourth field variable, the difference of chemical
potentials, p, ~

—pz, is the conjugate of the order parameter h. ) The coefficients aa and a t are arbitrary and
may be chosen to fit one's convenience, but in the three-phase region the coefficients a2 to a5 must scale
properly with respect to the distance y from the tricritical point, expressed in terms of the three field vari-
ables (e.g. , 5 T, Ip, or 5(); we choose y to be proportional to 6]. Then hx scales as y', a2 as y, a3 as y
a4 as y, and a5 as (at least) y'; the correction coefficients a7 and as are nonzero at the tricritical point and
thus substantially independent of y. However, since the coefficients a„must be smooth functions of the
three fields and thus in the tricritical region essentially only linear combinations of them, it is impossible for
any coefficient to be proportional to a power of y less than 1. Thus we take a5 as proportional to y rather
than to y'; this is in accord with the van der Waals calculations and, within some uncertainty, with our ex-
perimental results.

One can rewrite (1) in terms of the compositions of the three coexisting phases (hx = a, P, and y):

G~(h(, Tp, 4x) = (n —4x) (P —bx) (y —4x) [f0+f&(kx) +fz(Ax)'+. . . ],

where the quantities aPy, nP+Py+yn, a+P+y, fa, f&, and f2 can be identified as functions of the
coefficients in (1). Once these new coefficients have been identified, the third-order equation for the coex-
isting phases, (a —Ax ) (P —hx ) (y —hx ) = 0, can be transformed into a reduced equation:

z +(Ay' 2 —28By)z + ( —3+28Cy' +Dy)z+ ( —28+Ey' +28Fy) =0, (3)

where the coefficients A, 8, etc. , are functions of the original coefficients a„and substantially independent

1984 The American Physical Society 839



VOLUME 527 NUMBER 10 PHYSICAL REVIEW LETTERS 5 MARCH 1984

of y; z =x/y'i is a reduced composition, and 8= (2T —TU —TL)/(TU —TL), a reduced temperature that
varies from —1 at the lower critical end point to + 1 at the upper critical end point. At the critical end point
d8/dz must be exactly zero, so that this generates two relations between the coefficients in (3):

A —2C + E = 0; and 6B —3D + 6F + (A —C ) = 0. (4)

With an extended equation including higher powers of y' ', the coefficients a„ themselves may be polynomi-
als in y; this produces some ambiguity in relating them to the coefficients A, B, C, and D. However, if we
set a4 exactly equal to —6y, which then leaves a3 equal to —48y plus higher terms, we obtain

A =3[a7—a5/a4]; B = as —a7 ', C = a7', D = [27aii —25a7 —6a7(a5/a4) —9(a5/a4) ]/2.

One can easily obtain from (3) an expression for the roots of the extended equation as a perturbation upon
the limiting equation:

z = zo —[Czo + (A —2C) ]y'i /3 —[6Bzo + ( —18B + 3D —A + C )zo]y/18, (6)

where zo is a root (uo/y'i, Po/y'i, or yo/y'i ) of the unperturbed equation z03 —3zo —28=0. Since, from
the unperturbed equation uo(8) = —yo( —8), it follows from (6) that u(8) —y( —8) is a function only of
half-integral powers of y. Two such differences are that between the critical phases at the two end points
(zp= + 1) and that between the two noncritical phases at the two end points (zo= + 2):

hx, =xL, —xU, =2y' +(12B—3D+A —C )y /9;

hx'=x, —x, =4y' +2( —6B —3D+A —C )y /9.Ul L I

Especially simple is the ratio R,i, .

R,i, = (hx')/(Ax, ) = 2 —2By + O (y ).

(8)

(9)

To no surprise, these new simple results can be found in the van der Waals calculations; however, we had
not recognized them when we wrote our earlier paper.

The ratio we have reported ' in the past, that of the lengths of the tie lines at the upper and lower critical
end points, is not so simple:

RURAL
= (xU, —xU, )/(xl, —xL, ) = I —2Cy'. /3 —2C y/9+O(y3 ). (10)

It is now clear that a better test of the limiting
behavior is the new ratio R,i„which by suppressing
the half-integral powers of y emphasizes the under-
lying symmetry, while the other ratio RUE& is a
measure of the asymmetry.

Alternative order parameters, such as the molar
volume V or the molar concentrations, can be
used in equations like (I) and will have roots given
by equations like (3); only the numerical coeffi-
cients are different. Thus, for any order parameter,
the ratios R,i, and RUiL have the form of (9) and
(10). In our recent paper5 we raised the question of
the appropriate choice of order parameter for tricrit-
ical systems. In the present formulation a particular
linear combination of x and V will make C equal to
zero and thus suppress the y' term in RUiL, but
this corresponds to no physically obvious order
parameter, and we doubt if it is of much signifi-
cance.

These predictions about the shape of the 5-
shaped coexistence curve are borne out by all the
experimental measurements we have made on

binary and quasibinary mixtures of hydrocarbons.
As an example we cite the molar concentration of
the second component in the binary system ethane
+ n-octadecane. For this system, for which
E T=160 mK, we find R,i, =2.1, within experi-
rnental uncertainty the limiting value, while

RURAL
= 1.5.

Finally from (1) and (3) one can also derive the
susceptibilities X= [(BzG /tix2) T ] ' for the three
conjugate phases, and permit an examination of the
so-called Griffiths first sum rule. 6 We find for the
Griffiths ratio R„, which should be unity in the lim-
it, the result

R = (X' + X'i )/X

= 1+ (4B + C ) (2P + ay)/8+. . . . (11)

The correction term scales as (hx)2, i.e., as y or
and has a temperature dependence that is

roughly proportional to (1 —8')' 2. The prediction
that the change in R„ is proportional to 6( is not
yet supported by any convincing experimental evi-
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dence. Our own light-scattering measurements' on
the quasibinary system ethane + n-heptadecane +
n-octadecane seem to yield values of R„around
1.2—1.3, in agreement with earlier measurements
on another system, with no strong dependence
on 6(.

The experimental evidence about the limiting
behavior at a tricritical point is, at least in most
respects, in agreement with the mean-field theory
of Griffiths, ' so that detailed calculations based
upon a mean-field equation of state, which can han-
dle changes in both temperature and pressure,
should yield qualitatively correct results concerning
the approach to the tricritical point. We have long
been using the van der Waals equation to calculate
phase equilibria in binary systes. ' ' By continu-
ously varying an intermolecular interaction parame-
ter we can approach the tricritical point in a series
of truly binary systems which should be similar to
the quasibinary ternary mixtures we have been
studying in the laboratory.

In the van Konynenburg and Scott formulation'
there are three parameters: g, a measure of the
difference in size of the two molecules; f, a mea-
sure of the difference in internal pressure (or criti-
cal pressure) of the two components; and A, a mea-
sure of the interchange energy on mixing the two
substances. In most of our calculations we have,
for simplicity, set (=0 (equal sizes) and A=0.
Then the "distance" from the tricritical point is
measured by a single parameter A)= ( —f, , where

f, is the value of f at the tricritical point; this is pro-
portional to the y used in the eighth-order treat-
ment developed earlier in this paper. This quantity
5( is substantially equivalent to the AZ we use to
define the mixture of two very similar substances
that is the "second component" in our experimen-
tal quasibinary mixtures.

As reported earlier, ' we have been able to fit our
van der Waals calculations in the vicinity of the tri-
critical point to various power series in (5() t~ . All

these fits are, without exception, of exactly the
same form as those we have now derived from the
eighth-order free energy equation (1).

Our computer programs include the ability to cal-
culate the compositions of the three conjugate
phases, and thus to delimit the region of the phase
diagram in which three phases can coexist. If one
takes x and V as the variables (by eliminating tem-
perature from the T,x and T, V plots) one finds
that the locus of the three-phase line is now approx-
imately a parabola. If one constructs the various
three-phase triangles, a second parabola is the outer
envelope. For an overall loading of a constant-
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FIG. 1. T, ( "phase diagram" in the vicinity of the tri-
critical point for a sealed tube at fixed tricritical density
and composition. The tricritical point is at the confluence
of the three lines. T/Ti, is the ratio of the temperature
to the gas-liquid critical temperature of pure component
l. (Calculated from the van der Waals equation for
g=o, A=o. )

volume cell with mole fraction x and density I/ V~,
three phases can occur only if the coordinates of the
loading lie within the small "crescent-moon" area
so defined. For each of these loadings one can
derive the relative volumes of the three phases as a
function of temperature and determine the points at
which one phase disappears; this has been a great
help in planning and interpreting the experimental
measurements. As the distance from the tricritical
point, as measured by 5(, decreases, the crescent
shrinks and becomes more and more symmetrical.

Of particular interest is what we call the tricritical
path; if one fills a sealed tube with a ternary mix-
ture at exactly the tricritical composition and exact-
ly the tricritical density, what will be observed as
one heats the tube to and beyond the tricritical tem-
perature? (A similar question can be posed for a
four-component system at constant pressure. )
Three alternatives have been suggested:

(a) At the tricritical temperature three phases go
to one phase (as at the tricritical tetnperature in

symmetrical magnetic systems). Efremova and
Shvarts' claim to have observed this in the system
n-butane + acetic acid + water.

(b) At the tricritical temperature two phases go to
two different phases; one meniscus disappears just
as another appears. Efremova and Shvarts' report-
ed having seen this behavior in the system carbon
dioxide + methanol + water.

(c) Kaufman and Griffiths, ' on the basis of a
model designed to fit the experimental data on wa-

ter + ethanol + benzene + ammonium sulfate,
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FIG. 2. Relative meniscus heights as a function of
temperature for a sealed tube at fixed tricritical density
and composition and two values of (: the tricritical value

(,=0.5613551 (dashed curve) and )=0.56137 (solid
curve), slightly greater than the tricritical value. T/Ti, is
the ratio of the temperature to the gas-liquid critical tem-
perature of pure component 1. (Calculated from the van
der Waals equation for ( = 0, A = 0.)

suggest that below T, two phases coexist, and that
the volume of one shrinks precipitously to zero at

T, . However, they reported that "we have not been
able to confirm that this situation . . ., two phases
coexisting just below and only one phase just above
the tricritical temperature, is a general feature of
the classical model, nor to show the opposite, that
other situations are possible by an alternative choice
of the parameters. "

Our calculations on the van der Waals binary
mixture at f, yield behavior substantially identical
to that found by Kaufman and Griffiths for the
four-component system, suggesting that this result
is a fairly general one. A phase diagram for fixed
tricritical density p, and mole fraction x„and vari-
able temperature and g, is shown in Fig. 1; we be-
lieve it to be typical of all such binary or quasibinary
systems. Experimental paths are at fixed values of
(, and only for ( greater than f, does one pass
through the three-phase region. At ( equal to or
less than f, one passes directly from two phases to
one; if f is exactly f, , the n phase disappears precip-
itously at the tricritical temperature T, (infinite
slope of the phase volume versus temperature).

However, for a g infinitesimally larger than (,,

there is a very narrow three-phase region and a sub-
stantially larger two-phase region above it. Figure 2

shows our calculated phase volumes along a very
nearly tricritical path, which looks quite different
from the exactly tricritical path. It is possible that
what Efremova and Shvarts saw in the system car-
bon dioxide + methanol + water was a slightly
off-tricritical mixture with a three-phase region as
narrow as a few millikelvins and a two-phase region
above as wide as 1 K; if so, it is entirely under-
standable that they interpreted their results the way

they did.
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