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It is argued that a proper description of the vibrational properties of systems comprised of
solid spheres interacting via forces exerted at their points of contact must take account of the
rotational motion of the individual grains. The spectrum obtained by coupling these addition-
al degrees of freedom to the familiar translational motion is studied in both ordered and
disordered packings and, in the latter case, used to interpret data on compressional- and
shear-wave speeds in systems with pressure-generated contacts.

PACS numbers: 63.50.+x, 46. 10.+z, 62.30, +d

In describing the vibrational properties of solids,
one usually assumes that the sizes of the vibrating
particles are negligible compared to typical distances
between particles. (In the simplest case, a solid is
pictured as an array of point masses connected by
springs. ) By contrast, our concern is with granular
composites in which the mass is distributed uni-
formly over grains whose size and nearest-neighbor
distance are roughly comparable. Perhaps the sim-
plest example of such a system is a dense packing of
spherical glass beads under hydrostatic confining
pressure. ' Such model systems are a useful starting
point in the description of ocean sediments and sed-
imentary rocks.

In recent experiments, the acoustic properties of
granular composites have been studied under a
variety of conditions and over a wide range of fre-
quencies. '2 In this Letter we show (I) that to
understand the normal-mode spectrum in terms of
intergrain contact forces, the rotational and transla-
tional degrees of freedom of the grains must be
treated on an equal footing; (2) that reasonably
straightforward methods can be used to describe the
spectrum in the case of dense disordered packings;
(3) that in the static limit, our results reduce to
those obtained by previous workers; and (4) that
our predictions are consistent with data on the pres-
sure dependence of compressional- and shear-wave
speeds in systems comprised of spherical glass
beads. '

The static properties of granular composites are
usually described3 4 in terms of Mindlin's analysis
of the two-grain problem. ' The central notion in

Ref. 5 is that the intergranular force arises because
of relative motion of the contact points on adjacent
grains. In the case of pressure-generated contacts,
the component of this motion normal to the contact
plane will set up a compressiona1 restoring force,
while the component parallel to this plane will be
opposed by static friction. Formally, each contact

point is characterized by longitudinal (D~~) and
transverse (D~) force constants and the interyrain
force matrix is written as D (R,&) = D

~~ R,&R,&
+D~ (I —R&RJ). [Here R& = R; —RJ and the
force, F, , on the ith grain due to a displacement
Su& of the j th grain from its equilibrium position,
R&, is F, =D(R&) 5uj. ] For the moment, let us
assume that the grains are arranged on a periodic lat-
rice Given .this expression for D(R,&), one might
naively suppose that the spectrum could be evaluat-
ed by diagonalizing the matrix [cu21 —D ( k ) ],
where D(k) = $&D(R&)exp(ik R&). This would
be equivalent to the nearest-neighbor Born model
with u —

D~~ and p —D~ [o. (p) is the central
(noncentral) force constant]. It is known, however,
that the underlying potential energy is not rotation-
ally invariant. 6 In our view, a satisfactory descrip-
tion of the dynamics of granular systems should
take account of the most important new degrees of
freedom associated with the finite size of the parti-
cles. Since the grains are essentially rigid bodies
subjected to external forces and torques exerted at
each contact point, the principal new degrees of
freedom are associated with rotations of the indivi-
dual grains. Our aim, then, is to treat systems
where, in addition to a mass M and an infinitesimal
displacement 5u, we associate with each "particle"
a moment of inertia I and an infinitesimal rotation
58.

To illustrate the new features of the normal-
mode spectrum, let us begin by looking at ordered
systems and by setting all of the displacements
bu;=0. In Fig. 1 we show that there are important
effects associated with the local geometry of the lat-
tice. In open structures it is possible to set up coun-
terrotating modes in which, to first order, there is
no relative motion of the contact regions on adja-
cent grains and, therefore, no cost in elastic energy.
By contrast, in systems with closed paths containing
an odd number of grains, such zero frequency
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Open Packing
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Close Packing
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modes are eliminated by frustration. Although we
are principally interested in close-packed systems,
one surprising feature of the spectrum in open
structures is worth discussing. It might be thought liy
that the fully compensated mode shown in Fig. 1(a) p
can be formed only at the corner of the Brillouin
zone. It turns out, however, that coupling to the X

translational degrees of freedom can, in fact,
enhance the occurrence of compensation phenome-
na. This effect is especially dramatic in the case of (e)
one dimension (e.g. , a single row on the left-hand

FIG. 1. Schematic illustration of pure rotational
side of Fig. I). Displacements along the chain do

motion ji.e., 5u =0) in open and close ordered packings.
not interact with the coupled rotations and
transverse motion. We assume that the intergrain
force is proportional (with force constant D~) to
the relative displacement of adjacent contact points. Taking 5u; along the y axis and counterclockwise 58; as
positive, the equations describing the coupled transverse motion are

and

d 5M]
M

2
=Di((Su; t

—Su, )+(Su;+t —Su;)+R[(50; t+50, ) —(50;+i+58;)]},
dt2

d 58.
I

2
——RD~[ —R [(Sg, i+58;)+(5;+i+58,)] —(Su; t

—Su;)+(Su, +t —Su;)},
dt2

(Ia)

(Ib)

where R is the grain radius. Invoking Bloch's theorem, the secular equation is

0 = co
2

[co
2 —~02[sin2(ka/2) + n cos2(ka/2) ]},

where cu0=4D~/M and a = MR /I. Clearly, one solution is r0(k) = 0. (Physically, for each k, there is a bal-
ance between translation and rotation such that no relative motion of adjacent contact points is required. )
Curiously, we note that for u = I (i.e., all the mass on the grain surface), the frequency of the upper branch
turns out to be independent of k.

In two- and three-dimensional systems, the relative displacement of adjacent contact points must be treat-
ed as a vector and force constants associated with its components parallel (D ii) and perpendicular (D~) to
the line joining the grain centers must be included in our description of the dynamics. The model potential
energy is then

U = -,
'

X„.[D, [(Su, —Su, ) ——,
'

( 58, +5&, ) XR,, ]' +(D~~ —D, )[(5u, —Su, ) R„]'}. (2)
1

(The factor —, multiplying the 58 term appears be-
cause the grain radius R = —, lR,&l. ) As we noted
earlier, without the 50 term, our model reduces to
the Born model with noncentral forces. In the case
of (either ordered or disordered) close-packed
structures the interaction of translational and rota-
tional motion will not lead to the compensation ef-
fects discussed above. Using Eq. (2), we show, in

Figs. 2 and 3, respectively, the exact spectrum com-
puted along the [100] direction in an fcc crystal, and
approximate dispersion relations (calculated by two
methods) for a disordered packing. In both figures
the upper (lower) longitudinal (L) modes corre-
spond to pure rotational (translational) motion,
while, as in the one-dimensional case, the two ef-

832

fects are coupled in the transverse ( T) modes.
Figure 2 serves to illustrate the unphysical behavior
associated with the neglect of rotational motion.
Setting 50;=0, the spectrum consists of the lower
dashed T band and the lower L band which are
identical for the special case D[[ =D~ shown here:
At long wavelengths the compressional- and shear-
wave speeds are then equal, a result that is known
to be inconsistent with continuum elasticity theory.
The solid curves in Fig. 3 are derived with use of a
model pair distribution function to construct a
spherically averaged secular equation. In an earlier
paper it was shown that this method reproduces
the essential features of the normal-mode spectrum



VOLUME 52, NUMBER 10 PHYSICAL REVIEW LETTERS 5 MARCH 1984

C)

CO

+3
3

C)

LONG I TUOI NRL

C) ---- UNCOUPLEO TRANSVERSE

COUPLEO TRANSVERSE

":i t (81

i.

i ~

II

II ~

l 1

" ' k(r "

0

I

II

t 1

, d

~I ~ '
~ ~
~I ~

~ C

I II

o ll

1 T

f'. .
kn.

0.0 0.5
ka/(2m)

C3
I

1.0 0.0 0.5
ka/(2m)

1

1.0

FIG. 2. Longitudinal and transverse modes in an fcc
crystal. The upper (lower) uncoupled branch corre-
sponds to motion with Su (58) set =0. Here Di =

Dhoti,

t

I = —,MR', 2J2R = a (the cube edge), and ~0= 4D ii/M.

FIG. 3. (a) Longitudinal and (b) transverse dispersion
relations in a disordered packing. The average coordina-
tion number and center-to-center grain separation are
taken as Z = 12 and o. = 2R. The crosses and circles in-
dicate the half-widths of the upper and lower peaks in the
numerically computed spectral density functions.

in systems with purely longitudinal coupling
between point particles. The vertical patterns in

Fig. 3 are the results of machine simulations based
on the application of the equation-of-motion
method to a close-packed 500 site amorphous struc-
ture. The general agreement between these two
sets of calculations (for the disordered case) indi-
cates that the averaged dynamical matrix again
yields a reasonable picture of the average spectrum.

In the long-wavelength limit the dispersion rela-
tions shown in Figs. 2 and 3 can be related to ex-
pressions for static elastic coefficients obtained by
previous workers. In the ordered case, the sound
speeds along symmetry directions lead to relations
between the elastic constants C& and the force con-
stants Dii and D, : Ctt=2C44= (J2R) '[Dii

+Di], and Ct2 ——(J2R) '[Dii —Di], obtained by
Duffy and Mindlin. In the disordered case, we
find for the ratio of the sound speeds

Vt 3 [D ii + 2D i/3] ~~3
VT [D ii + 3D i/2]

(3)

which is equivalent to the results for the effective
Lame moduli derived by Digby. 4 We emphasize
that, because of problems related to rotational in-
variance, the above results cannot be derived from
the conventional continuum limit of the Born
model. We have, however, formulated a more gen-
eral theory in which one allows for two vector fields
Su( r ) and 58( r ) 9The . underlying potential-
energy density

U( r ) = —, (Xi(he;;eii+.2pe,&e,z) +, vi58 ——,V xSu
i } (4)

is positive definite and invariant under rigid rotations. Here 6,g is the usual symmetric strain tensor, and X,
p, , and v are generalized Lame coefficients. The relevant long-wavelength equations are

pttu 58 = v(58 ——, '7 xSu),

pttttu Su = —(lt+2p, )V(V Su) +p, V x (p'xSu) ——,v'7 x (58 ——, 7xSu),

(sa)

(sb)

where p~ and pi are the mass and moment of iner-
tia densities. [For the specific microscopic model
defined by Eq. (2), the relations between ()t, p„v)
and (Dii, Di] are given in Ref. 9.] Note that as

0, Eq. (Sa) leads to the condition 58 ——,V
xSu=0. [In the low-frequency transverse mode
rotation and translation couple so as to guarantee,
not that 58 =0, but that the local torque vanishes!]

For systems comprised of unconsolidated spheri-
cal grains under hydrostatic pressure, Mindlin5 has
calculated the dependence of the parameters Dii
and Di on (1) the diameter, d, of the contact area

(which increases with pressure) and (2) the elastic
properties of the grain material (roughly indepen-
dent of pressure). Since both D, i

and Di turn out
to be proportional to d, their ratio is independent of
d and, therefore, of the confining pressure. It fol-
lows from Eq. (3) that (VL/Vr) should be in-
dependent of pressure and should have a value
between 2.44 and 2.0 [under the assumption that
(Di/D, i) has a value between 0.33 and 1.0]. Ex-
periments by Domenico' on disordered packings of
spherical glass grains indicate that ( VL/ VT)
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remains essentially constant ( = 2.43) as the (hy-
drostatic) confining pressure is increased from 2.7
to 34.0 MPa. While the value 2.43 is somewhat
high, the fact that the measured ratio does not vary
with pressure is consistent with our Eq. (3) and
Mindlin's argument that D

~~
and D~ are both pro-

portional to a single contact area. ' Mindlin's work
also indicates that, in the weak-contact regime, the
ratio (D~/D

~~
) should be rather insensitive to the

elastic properties of the material from which the in-
dividual grains are made. Further measurements
on systems in which the composite geometries are
similar, but the elastic properties of the grains vary
greatly, would be useful in testing this prediction.

We have benefitted from discusssions with
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'While our Eq. (3) is equivalent to Eq. (33) and Eq.
(34) of Ref. 4, there is a significant point regarding the
interpretatiOn Of D ll and D ~ On whiCh we differ with Dig-
by. Although he claims to be using Mindlin's results,
Digby assumes that D ~~

and D q depend on different effec-
tive contact diameters (d~~ = a and dq ——b) only one of
which, d ~l, varies with pressure. Accordingly, his calcula-
tions indicate that (&z/Vr) should increase with pres-
sure to the value 3.0 as the ratio d~~/dq increases. This
prediction is not consistent with the data presented in
Ref. 1.
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