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Quenching by Static Traps: Initial-Value and Steady-State Problems
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Simulations and effective-medium calculations were performed on the absorption of im-

purity particles by static sinks in three dimensions. The theory shows no qualitative effects
due to two-sink clusters and agrees well with simulations. The conclusion is drawn that
effective-medium theory is adequate for time-dependent impurity concentrations C (t) above
the lower bound recently demonstrated by several authors. Crossing of the concentration
curves occurs at a time such that C (t)/C (0) = 10 or less.

PACS numbers: 05.60.+w, 82.20.Db

The conventional theory of diffusion-controlled
reactions, such as impurity quenching in metals, ex-
citon trapping, or enzyme catalysis, is based on an
effective-medium theory (EMT) that may be traced
to Smoluchowski. ' 3 The concentration C(t) of
the diffusing species decays through absorption by
sinks, which are here taken to be fixed in position.
For three-dimensional systems C (t) shows asymp-
totically exponential time dependence. In contrast,
the asymptotic result ln[C(t)/C(0)]~ —t has
been shown to be exact ' for a Poisson distribu-
tion of perfectly absorbing sinks, in the limit of
large systems. The proof that the nonexponential
decay is a lower bound has been generalized to
nonoverlapping and partially absorbing sinks. The
proof is based on the occurrence of arbitrarily large
regions devoid of sinks. I consider the conditions
under which EMT needs to be supplemented by
consideration of such voids.

Balagurov and Vakss supposed that EMT would
be adequate for times less than the t„at which the
computed C(t) dropped below the lower bound.
However, this criterion needs to be supported by
evidence that EMT does not break down, because
of large fluctuations in sink density, long before the
crossing point. I supply such evidence in the form

of a comparison between two levels of approxima-
tion in EMT, and computer simulations. The
second level of approximation, EMT2, accounts for
clusters of two sinks. Clustering effects are omitted
in EMT1. It is found that EMT2 gives a significant
quantitative improvement over EMT1 at high sink
concentrations, but gives no qualitative change.
Moreover, the effect of pairs of sinks separated by
more than a few diameters is quite negligible, which
indicates that large-scale density fluctuations will

not introduce a new time scale that signals the
breakdown of EMT in low-order approximations.
This is in agreement with the scaling arguments of
Tokuyama and Cukier. " Accepting then the cri-
terion of Balagurov and Vaks5 and supplying the
numbers they omitted, we find that EMT should be
adequate for C(r)/C(0) below its value 10 s' at
the crossing point for perfectly absorbing and non-
overlapping spherical sinks at a volume fraction
lJf 0.1 . Still lower values are found at higher or
lower concentrations, or for imperfectly absorbing
spheres.

Similar estimates for two-dimensional systems
lead to a maximum value C(t„)/C(0) =10 ' at
the surface fraction vf =0.1. However, I supply no
evidence that low-order EMT converges in two
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K, (t) =A) n( r —R;)P( r, t)d r. (3)

a(r) and e(r) are prescribed functions that vanish
for r & a. X is a rate parameter and K;(t) is the to-
tal flux into sink i For the. specific results to be
discussed, a and e were 1/v for r & a, where v is
the sink volume. Equation (2) was Laplace
transformed and solved for the transforms k;(s) of
K, (t), with spatial boundary conditions that are dis-
cussed below. Inverse Laplace transformation was
carried out numerically. The only random feature
in the simulation is the sink distribution. This pro-
cedure, described in more detail elsewhere, ' is ad-
vantageous at low sink concentrations or for contin-
uum models in comparison to a direct simulation of
diffusing particles. '3 The average of k;(s) over
sinks and sink configurations is yc/p, where

p = vf/v is the sink concentration.

dimensions. It is quite possible that the failure of
EMT will be gradual in two dimensions, and will be
seen at still shorter times, because of the greater
strength of long-wavelength density fluctuations in
two dimensions compared to three.

I introduce some notation necessary for a sum-
mary of the calculations. Let c (k, s) be the Laplace
and Fourier transform of the mean impurity con-
centration C( r, t) with respect to exp( —st
+i k r ). c(k,s) is the linear response of the im-
purity concentration, averaged over sink distribu-
tions, to an external driving source w ( k,s).
w(k, s) is the transform of some W(r, t), and
W( r, t) and C( r, t) are assumed to vanish for
t & 0. An initial-value problem is obtained if
W( r, t) has a 5(t) factor, and a steady-state prob-
lem results if W( r, t) has a time-independent part
for t & 0. (Steady-state calculations will be report-
ed as incidental evidence concerning EMT; howev-
er, the main focus is on the initial-value problem. )
The linear response may be written

sc = —k c —y(k, s)c+ w.

The unit of length is taken to be the radius a of the
spherical sinks, and the unit of time is a /D, where
D is the diffusion constant. The self-energy
y(s) =y(0, s) is closely related to the mean flux
into one sink.

The simulations were carried out in terms of a
microscopic impurity concentration P( r, t) We.
have C( r, t) = (P( r, t)), where ( ) is an
average over the spatial distribution of sinks. For I
spherical sinks of radius a centered at R, , we take

= V P —XK; (t) e( r —R;) + W( r, t ), (2)

The sinks were enclosed within a spherical sur-
face of radius R, on which boundary conditions
were imposed. For the results reported here the
surface was open to an external medium character-
ized by a self-energy y,„(s), except that the total
flux through the surface was required to vanish. as it
does for periodic boundary conditions. Standard
techniques allow the boundary conditions to be sat-
isfied to specified order I in a spherical harmonic
expansion. y,„(s) was calculated in the coherent-
potential approximation, ' which is a standard ver-
sion of EMT, to the lowest order EMT1. Incor-
poration into the boundary conditions of the im-
proved version EMT2 discussed belo~ made no sig-
nificant difference in the simulation results.
Several recent contributions'5 '7 to the quenching
problem, expressed variously in the languages of
multiple scattering or EMT, seem to embody no-
tions similar to those of the coherent-potential ap-
proximation.

In the lowest approximation EMT1, the diffusion
equation has to be solved for just a single sink in
the effective medium. In the next approximation
EMT2 the equation has to be solved for two
spheres at arbitrary separation R &2 & 2a in the ef-
fective medium. This problem was solved for the
fluxes k~(R~2, s) and k2=k& to arbitrarily high ac-
curacy with use of a Schwinger variational approach.
k;(R &2,s) is about 15%-20'/o lower at R ~2= 2a than
at large R ~2, for small s and small p. The variation
is less for large s and p. It turned out that correc-
tions to EMT1 deriving from large R t2, more than 3
sink radii, were quite negligible. Essentially the
whole correction of EMT2 over EMT1, indeed all
the correction in the approximation used here,
resulted not from the variation of kt(R t2, s), but
from the requirement of nonoverlapping sinks.
[The neglect of variation in kt(R t2, s), here approx-
imated by k;(oo,s), was estimated to cause errors of
up to 10% in the correction that EMT2 makes to
EMTl for steady-state problems, and up to 30'/o of
the correction for initial-value problems. ]

I report results first for the steady state, where
W= Ws is independent of r and of t for t &0.

ith Ls defined by p+s= ~s=p~sLs
gives Ls for the simulations and for EMT1 and
EMT2, for various volume fractions. The simula-
tion results were obtained on systems of 256 sinks,
with boundary conditions satisfied through I =5.
I used X=40. This value corresponds to a steady-
state rate Ls= X/(1+0 35/n ) =8. .299 at vf =0,
which is about 0.66 of the rate 4m for perfectly ab-
sorbing, impenetrable spheres. Convergence with
respect to I and I was estimated to be reached to
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TABLE I. Steady-state and initial-value results. The
second-order steady-state rate constant Ls is given for
several volume fractions vf. Rate parameter X=40.
Simulation results are under the heading SIM, and
coherent-potential approximations under EMT1 and
EMT2. The simulation results were obtained on systems
of 256 spherical sinks, with boundary conditions satisfied
through l = 5. C (t„)/C (0) is the fraction of impurity
particles remaining at the crossing time t„such that the
effective-medium calculation of C(t„) drops below the
known lower bound. The sinks are perfectly absorbing
and nonoverlapping.

25.

15. -

10. —

SIM
Ls
EMT1 EMT2 C (t„)/C (0)

0
0.001
0.01
0.05
0.1
0.2

8.56
9.20

10.93
12.80
16.69

8.299
8.55
9.14

10.41
11.59
13.71

8.299
8.55
9.20

10.91
12.81
16.72

0
1P

—442

1P
—145

]p
—77

10-"
10-"

within a few tenths of a percent, and statistical un-
certainties seemed comparable. (The uncertainties
in rates for the initial-value simulation were consid-
erably larger, up to several percent at the higher
densities and longer times. )

Results for the initial-value problem are shown in
Fig. I in terms of the effective rate R (t), where

C(t) = C(0) exp[ —pR (t)t]. (4)

Note that the time scale T in Fig. 1 is reversed and
distorted from t, in order to allow compression of
the data. The vertical ticks provide values of
C (t)/C (0). Numerical inversion of Laplace
transforms is inherently an ill-conditioned problem,
and we were not able to carry C(t)/C (0) below
10 to 10 with 8-byte arithmetic. However,
R (t) shows virtually straight-line dependence on T
through some four decades drop in C (t)/C (0), ei-
ther for the simulations or for EMT1 and EMT2. It
seems probable that the downward curvature to
R (~) =0 required by the existence of a nonex-
ponential lower bound would be found, if at all,
only in very high-order EMT approximations. We
assume, then, that the linear dependence of R (t)
on T wil1 proceed to 1arger times until t is so 1arge
that absorption at the boundaries of large voids pro-
vides a faster channel for decay. 5

According to Kayser and Hubbard, generaliza-
tion of the Grassberger-Procaccia lower bound to

0.0 0.2 0.4 0.6 0.8 1.0
T

FIG. 1. Apparent second-order rate constant R (t) vs
T for the initial-value problem. T = (1+20uf t )
R (0) =X=40. The upper curves are for vf ——0.1 and
give R (t) for the coherent-potential approximations
EMT2 (solid) and EMT1 (dashed). The lower curve
(solid) gives the EMT2 results for vf =0.01. The points
give corresponding results obtained from the simulation
of 256 spherical sinks with boundary conditions satisfied
through I =5. The five vertical ticks on each solid
curve denote interpolated and extrapolated points for
which C (t)/C (0) = 10 ", n = 9 (left), 7, 5, 3, and 1

(right) .

partially absorbing sinks with an arbitrary rather
than Poisson distribution requires only the substitu-
tion of p/ksT for p, where p is the pressure exerted
by the sinks. Moreover, the time t„at which the
EMT C(t) crosses the lower bound is rather large,
and the value of R (t„) from EMT will be near its
apparent limiting value, say R', see Fig. 1. Cross-
ing then occurs at

pR't = v3 (p/pkBT)(R' p' ) (5)

where v3=13.73 is the constant calculated by
Grassberger and Procaccia. The pressure on the
right-hand side of (5) was estimated from the
Percus-Yevick compressibility formula, ' and R'
was replaced by 4m, an approximate long-time value
for perfectly absorbing spheres. Corresponding
values of C(t„)/C(0) are shown in Table I for a
range of sink concentrations. It seems reasonable
to conclude that the effective-medium approach is
adequate for conventional three-dimensional
quenching problems.
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contribution, and to R. F. Kayser and R. I. Cukier
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Health Grant No. NIH GM 27945.
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