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Linear arrays of damped multistable systems in a constant driving field F are con-

sidered in the continuum limit,

The existence of a universal localized relaxation mode

(“inertia mode”) of the driven kinks is explicitly proven. This mode, of frequency w
= —in/m, collapses in the undamped (n —0) free (¥ —0) chain into the Goldstone mode of
the corresponding “free kink, ” and in a chain without inertia (» — 0) it relaxes instan-

taneously.

PACS numbers: 63.20.Pw

Linear arrays of uniformly'~'° or periodical-
ly''"15 driven and linearly damped multistable
systems (mainly modeled by the sine-Gordon or
¢* potential) have attracted in recent years in-
creased attention. As a result of the interplay
and competition between nonlinearity, damping,
and driving force, fascinating effects can oc-
cur.’”'® My aim in the present paper is to de-
scribe a new interesting phenomenon of this kind,
which consists of the occurrence of a universal,
localized, smooth relaxation mode of the uniform-
ly driven kinks (domain walls) in linearly damped
and tightly coupled multistable lattice-dynamical
and similar systems. As mentioned in the Ab-
stract, the existence of this universal relaxation
mode is intrinsically connected to the inertia of
the damped multistable chain. On this ground, it
will be referred to hereafter in this paper as the
“inertia mode” of the driven kinks.

Let us consider therefore a linear chain of par-
ticles subjected to a constant external force F
and described by the classical Hamiltonian

H=Z‘,i{§m¢')i2+%k(¢i+1—¢i)2+V(¢i)—F¢i},

Here m is the particle mass, ¢, (f) represents the
displacement of the Zth particle at the time ¢ from
the site x; of a reference lattice, ¢, =9¢,/9¢, k
is the strength of the harmonic coupling between
neighboring particles, and V(¢ ;) is a general
“multistable” on-site potential. We assume that
the chain deformation changes gradually from one
lattice site to the next (tightly coupled particles),
so that the continuum theory applies. We also
assume that each particle is subjected to a damp-
ing force proportional to its velocity. In this way
we obtain the following equation of motion for the
displacement field ¢ (x, ¢):

md +n —k1%¢" = F=dV/do. (1)

Here 71 is the damping coefficient, ! is the lattice
constant, the prime denotes 8/8x, and all the
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quantities are expressed in physical units.

In the absence of the driving field and dissipa-
tion, Eq. (1) describes a multistable Hamiltonian
system. The stable steady states ¢,° correspond
to degenerate minima®® of the potential V(¢), i.e.,
they are degenerate classical vacuums® of the
displacement field. These uniform configurations
are equally favored and are separated by transi-
tion regions called (static) kinks, solitons, or
domain walls. Because of the “relativistic” in-
variance of the corresponding equation of motion
(1), the kinks separating two adjacent domains
can also uniformly move along the chain, with
any velocity smaller than the velocity of sound
c=(kl%/m )1/2 If a constant external field F is
switched on, then, for limited intensities,* F
<Fp.x, the system still remains multistable,
but the domains become unequally favored and
the domain walls accelerate to acoustic velocities,
while their width goes to zero. If, however, at
the same time damping is present, the domain
walls may survive as permanent profile excita-
tions of the displacement field, moving with a
unique terminal velocity'™” v <¢. The inertia
mode of these driven kinks represents my main
concern in this paper.

The driven kinks under consideration are travel-
ing solitary waves ¢ ,=¢(X), X=x —v¢, which in-
terpolate the displacement field for X+t be-
tween the stable uniform configurations ¢, , cor-
responding to any two adjacent relative minima
of the “bias potential” V(¢)— F¢p. In other words,
the kink driven with a uniform velocity |v| <c
satisfies the equation

Wby +mo’ =V (pg)+ F=0 (2)
and the boundary conditions
¢K(i°°)=¢1,2, ¢K'(i°°)=0, (3)

where W,=k1%—-mv?>0 and the prime denotes
derivative with respect to the argument.
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In order to examine the linear excitations of
the driven kink we first transform Eq. (1) to the
comoving frame of the kink by (x, ¢)~ (X, ¢), such
that 0/ax-9/9X, 8/98¢~0/8¢ —vd/3X, and then
linearize the transformed equation around ¢, ac-
cording to the Ansatz

O (x, )=  (X) + p(X)exp(-i wi),

where ¢ is an infinitesimal deviation from the
kink. The obtained equation, transcribed in
standard Sturm-Liouville form, looks like

(€ X@") + Wy mw? +inw - V(¢ )} eX =0, (5)
where V'’ (¢ x)=d?V($)/d¢? for ¢ =¢ . and
a=mW, (1 -2imn"'w).

(4)

(6)

I am interested in localized modes of the kink,
defined as eigensolutions of Eq. (5) satisfying the
boundary conditions ¢(+«)=0 and normalizable
in the Sturm-Liouville sense, i.e.,

N= [ e®*|o(x)|2dX = finite. 1)

The wave equation (2) is invariant with respect to
the translation of the X coordinate. In the Kkink

¢ ¢(X), however, this symmetry is broken. There-
fore, the zero-frequency translation mode'®”*®
(Goldstone mode)

wp=0, @p(X)=0¢4"(X), (8)

which restores the broken translation symmetry,
must be an eigenmode of the driven kink. Indeed,
it is easy to check that the corresponding equa-
tion (5),

@p'" + 0o@p =W,V (¢ g)¢r =0, 9)

where a,= a(w=0)=mwW,™!, is identically satis-
fied. It is, however, not immediately obvious
that the translation mode is also localized, i.e.,

Np= f: exp(a,X)¢ ;' 2(X)d X =finite. (10)

There are two essential things which ensure the
finiteness of Ny: (1) the boundary conditions (3)
which imply @p(+«)=0, and (2) the positive curva-
ture V'’ (¢,,,) of the potential V(¢) in the asymp-
totic states ¢, , (which also implies the stability
of ¢,,,). Indeed, if we consider, e.g., the kink
moving in the positive X direction (i.e., v>0),
then for X— +, ¢,* decays exponentially with a
decay length {a,+ [ +4W, V"' (6 ,)]V/? 7, i.e.,
the integrand in (10) decays for X —~+« as

exp{- [a2 +4W, V"’ (¢ )]/2X}. Therefore, be-
cause of the mentioned two conditions the transla-
tion mode (8) is really localized. [If ¢, were an
unstable steady state, corresponding to a relative
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maximum of the bias potential, i.e., V' (¢,) <0,
the normalizability of ¢, would be questionable. ]
On the other hand, ¢ 4(X) is a monotonic function
of X, and thus ¢,(X) is nodeless. Hence w,=0
represents the lowest eigenvalue of (5) which im-
plies the linear stability of the driven kinks
against localized, as well as against extended,
perturbations of the dynamics.

I can now formulate and prove succinctly the
point of this Letter, namely that

wy=—inpn™, @ (X)=exp(a,X)@(X) (11)

represents a universal, localized, smooth relax-
ation mode, the inertia mode of the driven kink

¢ k. Indeed by substituting (11) in (5) and (6), one
obtains for ¢, just Eq. (9), ie., (w;,®;) is real-
ly an eigensolution. Having in mind the asymp-
totic behavior of ¢, one immediately sees that
the boundary conditions ¢, (+=)=0 are also satis-
fied. The inertia mode is universal in the sense
that w, is model (i.e., potential) independent and
the functional structure of ¢, (X) is also independ-
ent of the on-site potential V. When we take into
account that a(w=w;)=- o, it results immediate-
ly that the norm (7) of the inertia mode (11)
equals the norm (10) of the translation mode,

N, =N, , which shows that in the comoving frame
of the kink, ¢; is really a localized mode. Fur-
thermore, for {—+x, the “neighboring” solution

¢K+¢19Xp(— 2.wl t)=¢1(+(pl eXp(‘ W-lt)

relaxes smoothly to the kink as claimed above.
Thus, the smaller the mass (i.e., the inertia) of
the particles is, the faster is the relaxation. At’
the limit m - 0 (chain without inertia) the relaxa-
tion to the kink becomes instaneous, i.e., the
inertia mode disappears.

Equation (11) shows that the spatial part of the
inertia mode is obtained by a monotonic exponen-
tial modulation of the translation mode. Let us
now discuss the rate coefficient o,=m (k1>
—-mv?)™! of this modulation. One sees that a,
depends essentially on the kink velocity. Having
in mind the boundary conditions (3), this “non-
linear eigenvalue” v of Eq. (2) may be expressed
by the integral formula

v={V(9,)-V(9,) - F(¢, - d,)}
xmf . ¢, 2dX),

This is an implicit equation for v and thus it is
difficult to see how v really depends on the driv-
ing field F. For F-0, however, as argued by
Landauer'® in the case of the (bistable) ballast

(12)
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resistor, to first order in F, for any multistable
system

limp,V(®,) = V($,) - F(¢, - ¢, )} =AF

holds, where A is a constant. In this way, to
first order in F, the kink velocity may be calcu-
lated' by substituting into (12) instead of ¢, the
wave function ¢ °(x) of the static kink interpolat-
ing between the degenerate vacua ¢ | 2
=limp_,®,, , of the free chain, i.e.,

v=AFn [T (¢, ydx] . (13)

Therefore, if F-0, the Landauer formula (13)
implies that the rate coefficient @ in (11) is pro-
portional to F, i.e., @, vanishes for F=0. Thus,
in the limit n—- 0, F-0 (undamped, free chain),
the inertia mode (11) collapses into the Goldstone
mode (8) of the corresponding free kink.

The situation with which we are faced with here
is the famous “defect case” of a degenerate eigen-
value. For F=0 and 7=0, w=0 is a doubly de-
generate eigenvalue, but we have only a single
eigenfunction with exponential ¢ dependence. This
is the Goldstone mode ¢, (x)exp(0¢) of the static
free kink. The “defect-causing” solution is the
nonexponential (“algebraic”) “mode” t@,(x) which
describes a kink moving with infinitesimal velo-
city. If damping is switched on (n#0, F=0) the
degeneracy of w=0 is lifted by the occurrence of
the inertia mode, which describes the relaxation
of infinitesimally slowly moving kinks to the ini-
tial static configuration.

A more transparent picture of the v-F charac-
teristic of the uniformly driven kinks may be ob-
tained with the aid of the Biittiker-Thomas formu-
1a,%*® which is equivalent to (12), and looks like

v=tv,l(x3+Q72)V2, (14)

Here v,= (kV,)'/2/n, x=(mV,)"/2/n, V, represents
a conveniently defined “strength” of the potential
V(¢), and @ (denoted in Refs. 6 and 9 by ¢) is in
fact the single model-specific quantity which de-
termines the kink velocity via the potential V as
a function of the ratio = F/V,. In this way we
get

o=+ (Vo/klz)l/zQ(l + X2Q2)1/2-

Therefore, the rate coefficient o, depends in a
universal fashion on the Buttiker-Thomas (model-
specific) function (7). In the weak-field limit F
-0, one has® ® @7 and thus, one recovers the
above result a,o F.

I would like to end this Letter with some ex-
plicit results concerning the inertia mode of the

(15)

driven kinks in multistable systems modeled by
the popular sine-Gordon potential V=V (1 - cos¢).
For more concreteness I shall consider as phys-
ical background a Josephson-active transmission
line® and an analog mechanical system.*°

In the case of the sine-Gordon potential, for F
<F,x, the driven kink solution to Eq. (2) is un-
fortunately not available in closed analytic form.
In the weak-field limit, however, the terminal
velocity may be obtained immediately from the
Landauer formula (13), which yields v =(m/4n)(k &/
Vo)l/zF, and thus the rate coefficient @, in the
inertia mode (11), to first order in F, becomes
a, = (77/4)(kl2V0)'1/2F. The corresponding fre-
quency w; is given by the universal expression
(11).

A Josephson transmission line which includes
a distributed bias source and in which the only
dissipation is due to the conduction current of
normal electrons across the barrier may be de-
scribed'®* % by Eq. (2) with the mentioned sine-
Gordon potential. In this case ¢ represents the
quantum mechanical phase difference across the
junction and the other quantities in (2) have to be
replaced as follows™: m—¢ C/2m, k1%~ ¢ /2nL,
n—-gb,/21, F~j,, and V,~J ., where ¢,=h/2e
is the flux quantum, L and C are the series in-
ductance and the shunt capacitance per unit length
of the line, respectively, J, is the maximum cur-
rent per unit length that the junction line will
pass, and £ and jz are the shunt conductance and
the distributed bias source per unit length of the
line, respectively. On the ground of the above
results we can, therefore, predict that the local-
ized perturbations of the driven kinks transmitted
along a Josephson-active line decay exponentially
in time with a rate |w,|=g/C. Here the shunt
resistance per unit length £7! is a measure of the
damping and the shunt capacitance per unit length
measures the “inertia” of the Josephson line.
The rate coefficient ¢ in the inertia mode is now
given by

0y = (1/4)(Po/2m LT )" 2(j 4 /T,).

In the mechanical analog of the Josephson-active
line constructed by Nakajima, Sawada, and Ono-
dera,'® the decay rate |w,| corresponds to the
ratio 170/1, where % is the damping constant of a
single disk and I is the moment of inertia of a
single pendulum plus a disk. By using the nu-
merical results reported in the first paper of
Ref. 10, I obtained relaxation times |w,| ! of the
perturbed mechanical kinks between 2,63 and 58
sec. As in these experiments the kink velocity
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increases from zero to its limiting value 21.5
cm/sec and the rate coefficient @, takes values
between 0 and 0.02 7 cm ™.

Finally, I would like to emphasize that the ex-
istence of the inertia mode is also an imperative
requirement of physical intuition.

I am indebted to Professor H. Thomas and Dr.
M. Blttiker for communicating their results®
prior to publication. This work was supported

by the Swiss National Science Foundation.
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