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Three-Body Bound States on a Lattice
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The theory of three-body bound states for particles moving on a lattice and interacting
with attractive two-body pointlike potentials is presented. The applications are to bosons,
fermions (no three-body bound states are found), and magnons. When a three-body bound
state forms in three dimensions, it does so discontinuously. Thus there is a maximum
size for the three-body bound state, of approximately two lattice constants. Some of the
various analyses are relevant to magnetism and superconductivity.

PACS numbers: 63.90.+t, 74.90.+n, 75.90.+w

In this Letter we report on our study of three
identical particles with attractive pointlike two-
body interactions of strength U, on a lattice in
two and three dimensions (2D and 3D.) We find
several interesting and surprising results.

In the case of three bosons in 3D, there is a
jump in kinetic energy at the dissociation thresh-
old, implying a finite radius for the bound state
at threshold. This phenomenon does not occur in
2D or 1D, nor with one or two particles in any
dimension d ~4, and is therefore nonintuitive.

For three fermions, the Pauli principle re-
quires the wave function to be antisymmetric with
respect to interchange of at least two of them,
depending on their total spin. For S =& the wave
function is totally antisymmetric and there is of
course no interaction. Even for S = 2, when there
js an interaction, the three particles are unbound
with respect to breakup either into a bound pair
with S =0 and a free third particle, or into three
free particles. Upon finding that there is never a
three-fermion bound state, whether in 3D or 2D,
we conclude that the Cooper pair is truly funda-
mental in the theory of superconductivity. ' Our
work in progress' also suggests that in 2D, four-
fermion states are unstable against breakup into
pairs. It should be noted that 2D is the ana1.og of-
Cooper's problem as the density of one-particle
states is essentially constant. Two-body bound
states form at arbitrarily weak values of the
coupling constant, yet three-body bound states
are tota1.1y missing for fermions.

Finally, our results can be used to estimate
the limits of validity of spin-wave theory as ap-
plied to the anisotropic Heisenberg ferromagnet
in 3D when J, ~ J„=7,. We consider the long-
soavelengtk magnons which predominate at low

4 = QM(k, k, k,)a„'a, 'a~ '~ 0)

with M a tota1. ly symmetric function of its argu-
ments. Tota1. momentum P = 0, + k, +k, is con-
served (to within a. reciprocal-lattice vector),
and Schrodinger's equation HC = -W4 is satis-
fied by defining

$(k,)=——Q M(k, ,k2+q, k, -q) (2)

from which it follows directly that

T. At Z, & 1.438„, we find a three-magnon bound
state to be stable against all breakups. At Z,
&1.674„, a two-body bound state can also form.
Thus, once J, exceeds O(1.5J„), the very con-
cept of magnons as elementary excitations of the
ferromagnet ceases to be valid at all but the 1ow-
est temperatures, and one must deal with the
bound compI. exes. Except in 1D there has been
very little research into this topic, which ap-
pears to have interesting consequences.

We proceed to outline our procedurey and give
the results graphical1y. Divers extensions to
n& 3 particles and to repul. sive forces are de-
tailed in some companion articl. es' and in the
Ph. D. thesis of one of us (S.R.).

First, consider three spinl. ess bosons on a 1at-
tice. The "kinetic energy" (KE) of an individual
particle comes from hopping from site to site,
the potential energy (PE) is the result of two-body
interactions. For simplicity, we take the interac-
tion to be —U for any pair of particles on the same
site and zero otherwise, limiting the hopping ma-
trix elements to connect nearest-neighbor sites
on a square lattice (2D) or simple cubic lattice
(3D). The bound-state eigenfunction must take
the form

M(k, k2k, ) = U ' ' ' ~(P —k, —k2-k, )
S(k,)+ S(k,)+ S(k,)

12 3
(3)
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where 7 —= W+ e(k,) + e(k, ) + e(k,), W is the binding
kenergy wl resth espect to free particles, and e

red rel-are the individual kinetic energies measured re-
ative to the bottom of the band,

e(k) = 3 —cos k„—cos k, —cos k, .

ln 2D, the 3 is replaced by 2 and cosh, 1s m1ss-
in .

The basic integral equation is obtained by sub-
stituting (3) into (2) and replacing sums by an in-
tegral over the Brillouin zone in the usual way.

The similarity transf ormation

S(k) = S(k) [1-UI(k)) "', (4)

with E(k) a variant of Watson's integral,

I(k)=- —P~- (k, q, P-k-q,-1
(5)

N

transforms the kernel in the basic integral equa-
tion into a symmetric form K(k~q), i.e. , we are
led to solve

S(k)=(2~) 'f 'a'qJf(k~q)S(q) 6

in d dimensions, where the compact, symmetr1c
kernel

X(klq)=2U/[1-Uf(k)][1-Ul(q)j) '"~ '(k, q, P-k-q
is a posl 1ve un't f ction invariant under the cubic
group 0„. At P=0, the locus of 1 —UI(0) =0
[note: 1(k) is a function of W] and the horizon-
t l

'
TV —0 form the boundaries of the two-

body and three-body continua, respectively, in-
' t" U(2). Thetersecting at a "tricritica1. point

th -body solutions must lie below this.ree- o
To obtain a soluti. on, one expands S&k & 1n, ,

Fourier u 1c ar"k b' h monies'" and solves a secular
determinant, the elements of which are six-di-
mensional integrals. All standard techniques for
evaluating such integrals, including the Monte
Carlo method, turn out inadequate —if the num-
be1 of goin s 1s smf t small. enough to be usable in our
iterative solution of the secular equation, the ac-
curacy is unaccis unacceptable. And if the accuracy is

th of thewithin the acceptable 1% range, the length o e
computation on our available computer must be
measured in months. Fortunately, the unconven-
tional. Korobov-Hl. awka number-theoretic "quasi
Monte Carlo" method devised for periodic func-
tions, suc as ourh as our S I and K functions, deliv-
ers the desired accuracy, with a few thousand
points only, for integrations of up to nine dimen-
sions.

The results for three identical bosons are
shown 1n 1g.F 1 There exists only one strongly
bound, 1s type, bound state, with threshold at
,( ) = 2 60. The curve W(U) for this bound sta e

dbm totic to a line of slope 3 indicate y
statedashes i.n the figure. The three-body bound s a e

appears e ore eb f the two-body bound-state thresh-
old at U, (2) = 3.96 and lies well below the two-
b d tinuum as shown in the figure. Using
S(k) we calculate F.„, shown in Fig. , an y
Feynman's theorem,

aW/aU= (W+&„)/U,

0

7

FIG. l. Binding energy lV vs strengt U of attractive
two-b y p-bod otentia sn-b 1

' 3D The shaded three-body con-
articles, the dotted two-bodytinuum represents free partic es, e

continuum repres enresents two-particle bound states wit
) f rticle. The fundamental three-

bound state, labeled n =-3, is asymptotic to t eboson oun
excited bound staterai ht dashed line of slope 3. The exci

an zm
' ' oint of radius ofand "Efimov states» all lie wuhan a p

'

order 10 ' at the tricritica poin' al oint U {2)=3.96. There
are no three-fermion bound states. 1 b lThe curves label
n =4-7 are estimated binding energies for ~ =4—7
b with p (g) estimated as 7.92/pg by a general-
ized Stenchke inequality (Ref. 5), with U
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FIG. 2. As U is increased (note break in horizontal
scale) the three-boson threshold is approached at
p (3) =2.60. The KE and PE both jump discontinuously
at this point, while their algebraic sum (g) grows con-
tinuously from zero. The finite KE implies a finite
radius ~2 lattice constants for the bound state at
threshold, decreasing to 0 with increasing p.

we confirm that dW/dUx 0 at U, (3). Thus, for
Us U, (3), R» and V are both zero in the ground
state, whereas for U~ U, (3), &» and V are both
finite. We estimate the maximum radius of the
three-body bound state to be & 2 lattice constants.
The discontinuity in &~ at threshold is shorn in

Flg. 2.
Using Stenchke's inequality' W, (U) o 2W, (

—', U),
where TV„ is the binding energy for n particles,
as an estimate, we have U (3) = ~ U (2). Strictly
speaking, this estimate applies to a continuum
theory only, but with U, (2) = 3.96 the calculated
lattice value, it predicts U, (3)=2.64, correct to
1.5%%uo. A generalized inequality enables us sim-
ilarly to estimate,

U, (n )= (2/n ) U, (2).

Coupling this with the obvious strong-coupling
asymptotic properties of the bound states as U

-, we obtain the estimated binding energies
for n = 4, 5, . . . particles shown as dot-dashed
curves in Fig. 1.

A remarkable feature of the three-body prob-
lem is the infrared divergence in K(k~ q) near
U (2). First noted by Efimov, this singularity is
responsible for an infinite number of bound states,
all s states with increasing radial quantum num-
bers. On the scale of Fig. 1, all the Efimov
states lie within a dot of radius 10 ' at TV = 0,

FIG. 3. Same as Fig. 1 in two dimensions. However,
the curves for n —4 have all been omitted as gEE

thresholds U, (n) =0. There are A&0 Efimov states in
2D, nor any three-fermion bound states.

U-2d(Z, —1) (10)

where d is the number of dimensions and 4„=1.
The above calculations repeated on a 2D lattice

show U (2) = U (3)=. . . = U (n)= 0 and yield a unique
1s-l.ike three-boson bound state shown in Fig. 3.
As is well. known, ' there are no Efimov states in
2D. We find no excited bound states whatever
for n =3 particles, and do not suspect the exis-
tence of any for n&3.

U (2)! The 2s bound state found in continuum
studies of the three-body problem by Amado and
others' has also col.lapsed in our lattice theory,
merging with Efimov's states within the afore-
mentioned barely visible dot. While we suspect
that Efimov-like states also exist for n =4, 5, . . .
particles on the lattice, we have not pursued what
appears to be a purely academic point.

The estimates for two and three magnons in the
anisotropic Heisenberg model quoted in the intro-
ductory remarks follow directly once we make the
identif ication
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Turning finally to fee mions, we can dispose of
the totally antisymmetric space functions, which
are noninteracting for point interactions. The
two-cot. umn Young tableau representation of spin
S = 2 states resul. ts in an equation similar to Eq.
(6), with K now given by

Z() (q) = -V([1-VI().)][1-VI(q)]) '»~ '.

and 3D.
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Because of the change in sign of the kernel, the
only possible solution is 2p like. Our numerical
studies show conclusively that no such sol.ution
exists in 2D or in 3D. Thus, the three-fermion
state is unstable. The basic feature which re-
lates a l.attice in 2D with the theory of supercon-
ductivity in 3D is the rel.atively constant, finite,
one-particle density of states in the relevant
ranges of energy. Thus, any number of interact-
ing quasiparticl. es in the neighborhood of the
Fermi energy of a metal in 3D may be, for some
purposes, modeled by an equal number of inter-
acting particles on a 2D lattice. We believe that
the lack of three-body (and, we believe, four-
body) bound states in 2D shows that Cooper' most
properly selected the electron singlet pair as
the basic unit of charge in a superconductor:
Complexes with 3e, 4e, etc. , are unstable against
breakup into a suitabl. e number of pairs. This
fact was intuitivel. y grasped by BCS in their var-
iational solution of the N-body problem.

In relating the continuum literature' to the
present discrete model. , one must take various
limits. The details will. be discussed at length
el.sewhere, ' as well as the exciting applications
to the study of repulsive forces in order to ob-
tain the ground state of the S= & XY model in 2D
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8A correspondence between our discrete model and
the potential p&zi ——gf(&)f(&') in the continuum models
is achieved by taking f'(P) =(P + p ) in the appropriate
limits: p ~, g 0 such that gp =Zr, with y/p=U,
U {2)=p ~ and the scattering length

a«=((1/V, (2)1 —1/V} '=
p ') /(1-&).
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