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Polarization Renormalization Due to Nonlinear Optical Generation
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By concentrating on the total electric polarization at the frequency of a wave generated
by a coherent nonlinear optical process, the author extends the treatment of Bloember-
gen and Pershan to show that anomalously small multiphoton excitation is a consequence
solely of Maxwell's equations, with no recourse to a quantum mechanical treatment of
the nonlinear medium's polarization response to applied electric fields.
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The seminal work of Bloembergen and his col-
leagues"' codified the theory of nonlinear optics
and laid a systematic framework for the analysis
of a large fraction of the experimental results
that followed. In particular, Bloembergen and
Pershan (BP)' solved the electromagnetic (em)
wave equation with a nonlinear source electric
polarization (P "' ), showing how the solution for
an em wave propagating in a nonlinear medium
could be described as a superposition of a driven
wave (driven by P "

) and a free wave. Their re-
sults have been widely accepted and used to cal-
culate the electric field amplitude of em waves
generated by coherent nonlinear optical process-
es. However, relatively little attention has been
paid to a complementary aspect, namely, the
electric polarization amplitude at the frequency
of the generated em wave, since experimental
measurements of this polarization have been
very rare.

Recent experiments and theory' ' have dealt
with phenomena where coherent generation of
em waves is intimately involved with multiphoton
excitation, leading to unexpected results. In par-
ticular, the absence, disappearance with increas-
ing vapor pressure, or reappearance with retro-
reflection of a multiphoton-ionization signal, ' as
well as the disappearance with increasing pres-
sure of fluorescence from a multiphoton-excited
state, have been explained by considering the
effect of coherent third-harmonic generation on
the multiphoton excitation. ' These explana, -
tions" present specific calculations showing that
the total excitation is reduced by the harmonic
generation process, but they fail to address the
underlying general principle that leads to such a
reduction. In this paper, I will show that this re-
duction is dictated by the laws of em wave propa-
gation, namely, the em wave equation that is de-
rived from Maxwell's equations. I will treat the
problem entirely classically, making no recourse
to a quantum mechanical description of the linear
or nonlinear system response. The key idea is

to consider the tota& electric polarization (P'" ).
This is the sum of the aforementioned nonlinear
source polarization (P "') (the driving force of
generation) and the linear polarization (P' ),
i.e., the linear response of the polarizable medi-
um to the generated electric field. Using this
idea, I apply the BP approach to situations where
the coherently generated em wave experiences
linem. absorption, leading to a spatial decay of
the free wave, so that the spatially persisting
wave is described solely by the driven-wave
solution. Then, careful consideration of the re-
lationship between Ptot 2nd Pets is snfficient to
explain the anomalous experimental results. '~

A steady-state (in time), plane-wave approach
is sufficient to demonstrate the essential physi-
cal ideas. Following BP, I consider the genera-
tion, in a homogeneous nonlinear medium, of
an em wave at frequency +G by a transverse,
linearly polarized P"" (zc). This polarization
is the response of the nonlinear medium to ap-
plied em plane waves at frequencies other than
~~, and, as such, its spatial variation will re-
flect the spatial variation of those waves. I as-
sume a traveling wave P" (eG) =P,"" exp[i(k~z
-cv Gt )] propagating in the z direction with a
spatial periodicity given by k~, the driven wave
vector; Po " is the spatially invariant ampli-
tude. ' Further I assume that k~ is real, which
means that there is no attenuation of the applied
waves and consequently of P . The electric
field of the generated wave, E(~c), is determined
from the em wave equation for the Fourier com-
ponent at e~,

+( '-) Z{~g)= —4w( )P'"'i~ ). (1)G

Here, the total polarization is given by

Ptat( ) Plin ( ) ~PNLs(, )

=(4v) '[~(~g) —&]&(~c)+P' (~c), (2)

where the linear polarization is related to the
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electric field by the relationship P""(ufo) = X' (&u~)

xE(tDD), and e(too) = I+4nx' (tDD) is the usual
linear dielectric constant. Substituting Eq. (2)
into Eq. (1) gives"

+ ~ (|Do) E (too)

4 D PNLS(
C 6 ' (3)

Ptot( )
D( o) PNLS(.

E D ( ltd O) —E( ttt g)
(6)

Clearly, the generation of the wave E(tt&o) changes
P" ( tt)Dfrom its value P (tD~) in the absence
of E(&D~). But the specific value taken on by
P'"( )tDwDhen E(too) = ED(tDo) is just that required
for an undamped em wave propagating with wave
vector kD. Another way of writing Eq. (6) is
P"'( )tD=(4~) '[~D(tD, ) —1]ED(&D,), which ex-
plicitly shows that the driven wave at ~~ looks
just like an em plane wave propagating in a medi-
um described by a linear dielectric constant
CD((dO),

An alternative description of this situation is
that P (tDD) is renormalized to a new value,
P"'( c)t,booby the generation of the field ED(ADD)

and its accompanying P (too). Under these con-
ditions, energy is not exchanged between the
driving fields [resPonsible for P (tDD)] and

ED(&DD), and P"'(AD) is in phase with ED(tDD) so

For a semi-infinite nonlinear medium with a
planar boundary at z =0, BP found the following
solution to Eq. (3):

E (otto) =ED((tto) +Ep exp(i [k ((Do)z

tarot

] j, (4)

where E~ is the spatially invariant amplitude co-
efficient of a free wave propagating at k(otto) =

= [@ (tDo)]
' '&tto/c, and ED is the driven wave prop-

agating at kD. BP gave the solution for ED,

ED(tDo) = 4~P""'(tDo)/[ ~D(tDo) —~(tDo)] t (5)
where ~D(tDD), the effective linear dielectric con-
stant of the driven wave, is related to the driven
wave vector by k D

= [eD(otto) ] ' '&Do/c.

For now, the amplitude coefficient E~ is unim-
portant, because I will first treat the case where
linear absorption at ~G has led to the exponential
decay (in space) of the free wave. [Formally,
such linear absorption results in a complex k(tDG)

and a free wave whose amplitude decays exponen-
tially with an e-folding distance of iimki '. J

This leaves only the driven wave, and substitut-
ing for E(tDD) in Eq. (2) with Eq. (5) yields

that enery is not exchanged between the polariza-
ble medium and the fields. '

Equation (6) is a general result for any nonlin-
ear medium in which a transverse P"" (too) is
created and a free wave at ~~ is absent, with the
restriction that P (tDo) is not damped [i.e. ,
cD(tDD) is real] and the approximation that ED(tDo)
is sufficiently small so as not to react back on
the original waves that create P (&Do). The
magnitude of P"'(tDD) might be less than, equal
to, or greater than that of P "

(otto), depending
on the linear optical properties of the nonlinear
medium. In particular, if [eD(otto) - 1]/[ eD(&D~)
—e (tD o) ]«I, P "'(tDo) will be relatively small,
and experimental measurements that depend on
P"'(&Do) will show an anomalously weak signal.
The observation of such a weak signal is surpris-
ing" and is not explained by a simple measure-
ment of the light intensity at &Do. Instead, the
coherent superposition and destructive interfer-
ence of P '"(tDo) and P (&Do) must be recognized
as playing a critical role in allowing for a small-
er magnitude for P"'(&D)othan one would expect
from consideration of P""(tDo) or P "(tDo) sepa-
rately. ' The experiments" that showed anoma-
lously small P" (&tD)owere carried out in an atom-
ic vapor where the frequencies of the input lasers
[responsible for P (coo) J were far from reso-
nance, while ~~ was near resonance, so that'

It is instructive to extend this treatment to a
P (&Do) that is the superposition of several trav-
eling plane waves. Each plane-wave component
of P (tDo) will Produce a comPonent of the
driven field with the same spatial dependence as
its source, leading to different renormalized
values for each plane-wave component of P"'(

t)D, D

depending on the phase mismatch. This is illus-
trated by the special case of third-harmonic
generation (THG) from a laser beam at frequency

and wave vector k that is split into two waves
passing through a nonlinear medium in counter-
propagating directions. The forward-propagating
beam (k) creates P (3tD, 3k), a nonlinear polar-
ization plane wave propagating in the forward di-
rection with a wave vector Bk; the backward-
propagating beam creates P (3tD, -3k); and the
cross terms between the forward- and backward-
propagating beams create P (3u, k) and P " (3~
-k), waves propagating with wave vector k and
-k, respectively. For this situation, the driven-
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wave solution of Eq. (3) contains terms proportional to each of the nonlinear polarization waves, but
the contributions from the waves with wave vector k or —k have a very different amplitude from those
from waves with wave vector Sk or -Sk. It is straightforward to show that this difference is due to
the entirely different phase mismatches. The expression for P"'(3~), analogous to Eq. (6), is

P"'(Su)) = [P "(3&@,Sk)+P (S~, -Sk)]
e((u) —c(3~)

+ Z'"' Scu, k +Z'"' S~, -k (7)

In the case (discussed earlier) of an atomic vapor
with 3~ near resonance and ~ far from reso-
nance, [e(~) —1]/[e(&u) —c(3~)]=0, so that the
contributions to P'"(Scu) by the waves at 3k and
-Sk are still renormalized to anomalously small
values; but [ e(~)/9 —I]/[e(~)/9 —e(3~)]=1, so
that the contributions by the waves at k and -k
are essentially not renormalized, leading to
easily measurable effects due to P'"(3~) (e.g. ,
ionization, fluorescence, etc.).

The more general case of THG from two beams
(k, and k, ) crossing at an arbitrary angle (8) pro-
duces analogous results, whereby the nonlinear
polarization waves at Sk, and Sk, are renormal-
ized as in the first term of Eq. (7), while the
nonlinear polarization maves a,t 2k, +k, and k,
+2k, are renormalized with a coefficient [-,'e(cu)
x (5 + 4cos 8) —1]/[ g E((d)(5+ 4 cos ~) —E(SR)].
This coefficient is seen to reduce to the values
already derived for copropagating beams (9=0')
and counterpropagating beams (9=180').

The previous discussion has been restricted to

! the case where any free wave at ~~ has damped
out (the optically thick ease'). More generally,
free waves are present, and P"'(~~) will depend
on the amplitude and phase of such free waves.
Returning to Eq. (4), the boundary condition at
z = 0 (the entrance to the nonlinear medium) estab-
lishes the magnitude and phase of E~. Because
of the phase mismatch, » =k(&uG) -k~, the free
wave mill shorn spatial oscillations in phase rela-
tive to ED(~~), leading to spatial oscillations in
amplitude and phase of E(~~), corresponding
spatial oscillations in P "(co~), and complemen-
tary spatial oscillations in P'"(uG). Such oscil-
lations will be reflected in the spatial dependence
of experimental signals, such as ionization or
fluorescence, that depend on P"'(&ua).

A special case to consider is the most common
situation for generation of a new wave at e~,
namely, E(u~) =0 at z = 0. Then Ezexp(-i~~t)
=-E~(~G)!, „which, upon substitution into Eq.
(4), yields E(w~) = [1-exp(i»z)]ED(a~), ' and
upon substitution into Eq. (2} gives

[e~(a~) - 1]—[ e(m~) —1]exp(i»z)
G (8)

This is a. generalization of Eq. (6) for P"'(~~) as
a function of ~, before the free wave has damped
out. One sees that P'"(e ~) oscillates in z with
the phase factor exp(i»z). If the nonlinear medi-
um is absorbing at &u~, k(re~) and, therefore,
Ak have positive imaginary parts, and ! P"'(or~)!
will decay in space with increasing z. For small
! Im»! z (the optically thin case'), Eq. (8) shows
that P"'(su~)/P (~~) has a constant amplitude
but a phase that varies sinusoidally with ! Re»!z.
For large ! Im»! z (the optically thick case'),
exp(i»z) -0, the free wave has damped out, and
Eq. (8) reduces to the asymptotic result, Eq. (6).

This paper has concentrated on a classical deri-
vation of the renormalization of a nonlinear po-
larization in the presence of coherent nonlinear
optical generation. The goal has been to explain

! the results of Refs. 3 and 4 in terms of a general
picture, relying solely on Maxwell's equations.
This method is not suitable for treating other re-
lated results"" in which an isotropic medium is
coherently excited near a two-photon resonance,
leading to coherent nonlinear optical generation
and a reduction of the coherent, two-photon exci-
tation. Such a two-photoIl excitation is not ac-
companied by an electric polarization, and a
treatment based on linear dielectric response is
not appropriate. However, the concept of inter-
ference between different pathways of excita-
tion'" is a useful way to understand such results.
Finally, Meredith" has used a semiclassical de-
scription of nonlinear optical generation to treat
low-order multiphoton excitation in crystals.
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His results also demonstrate that destructive
interference between different optical harmonics
can lead to a large reduction of the multiphoton
excitation.
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