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Universal Behavior of Sinai Billiard Systems in the Small-Scatterer Limit
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Sinai billiard systems are studied numerically and analytically. Let h be the Kolmo-
gorov-Sinai entropy, (r) the mean free time of the point mass, and e the scaling factor
of the size of convex scatters (so that q 0 implies vanishing scatters). The following
universal behavior is conjectured for any periodic Lorentz model in d() 2)-space:

lim, 0 k(r)/(-1ne) = d.

PACS numbers: 03.20.+i, 02.50.+s, 05.20.Dd

Sinai bill. iard systems' or periodic Lorentz gas
models' have been studied for a long time to clar-
ify the logical foundation of equilibrium and non-
equilibrium statistical mechanics. These sys-
tems have been studied extensively by mathema-
ticians, but there are only a very few quantitative
results known. The simplest. Sinai billiard sys-
tem consists of a point mass and a square table
with a circular obstacle of radius R on it. The
point mass moves without friction and is elastical-
ly reflected by the boundary of the obstacle and,
upon hitting the edges of the table, disappears to
reappear on the opposite side with the same vel-
ocity (periodic boundary condition). Thus we may
think that the point mass moves geodesically on
the two-torus (Z'), occasionally elastically scat-
tered by the obstacle. When we consider this
problem in the covering space of T', we call this
the Lorentz gas problem on the square lattice
with circular obstacles.

Sinai's celebrated theorem' tells us that as long
as ~)0, the system is chaotic, or, more pre-
cisely, the system is a & system, ' one of the
most chaotic dynamical systems, and that. the
Kolmogorov-Sinai (KS) entropy' It is positive.
Roughly speaking, the KS entropy measures the
rate of loss of information contained in the en-
semble of initial conditions; if the beam of tra-
jectories of a billiard initially subtending a small
angle & spreads over the angle $(t) after t sec,
the rate of loss of information is - [Inc'
—lnp(t) ']/t. Thus the KS entropy is a good meas-
ure of "disorder" of dynamical systems; a more
precise but still intuitive explanation can be
found in the work of Qono and co-workers. ' When
&=0, i.e. , there is no scatterer, it is obvious
that the system cannot be chaotic; the system

cannot even be ergodic. 'Thus there is an "order-
disorder" transition in the &- 0 limit.

As a part of our quantitative study of Sinai bil-
liard systems, in this Letter, we study the sim-
plest problem, i.e. , the transition (or the criti-
cal) behavior from the chaotic to nonchaotic re-
gimes. Qur result can be summarized in the fol-
lowing conjecture in the simplest square lattice
case. Asymptotically for small B, we have

where (~) is the mean free time. (Throughout
this paper, A-& implies A/& converges to unity
in the appropriate limit. ) It is not difficult to
show intuitively that (7) It is of order —lnR (actual-
ly, a proof is given below). At each collision,
the angle subtended by the beam of trajectories
is magnified by -If '. Hence P(t) in the preced-
ing paragraph behaves like -e(R ')' '". Hence It- —InR/(7). What we claim in (1) is that the pro-
portionality constant is exactly 2 (i.e. , the spatial
dimensionality). Moreover, later we will discuss
that (1) is virtually universal, independent of the
lattice structure and the number and shapes of
convex scatterers.

Since between two collisions with the scatterer
the particle travels along a straight line with a
constant velocity which we normalize to unity, if
we specify all the collision data, we can describe
the system completely. Each collision can be
described by the angle y (H [7r/2, 37r/2]) of inci-
dence and the position r {E[0, 2sR)j of the col-
lision on the boundary of the scatterer (see Fig.
1). Thus the map T which describes the relation
between the coordinates for the &th and (n+1)st
collisions contains a.ll the information about the
dynamics; the relation between T and the original
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continuous dynamical system is given by the so-
called Ambrose-Kakutani representation, ' More-
over, the KS entropy @ of the original system can
be calculated from the KS entropy @~ of the I
map according to the Abramov formula'

k=h /(z). (2)

An explicit formula for ~~ can be found in Kubo. '
The formula can be understood intuitively by the
"dilution ratio formula, ""and reads

~(e) + + +R -1

cosp (3) FIG. 1. Definition of variables used in the 7' map.

where de= —(4') cosydy«, ~„ is the free time between the (ri —1)st and the &th collisions,

X"'(r, y)=R ' —cosy r, +
1—2R '/cosy, +
+ ~ ~ ~

1

1
—2R '/cosy „ + ~

(4)

and T"p=p„.
We have calculated @~ numerically by three

methods. In the first method we work directly
from formula (3). We approximate the function
p"'(r, y) by truncating the partial fraction ex-
pansion. The phase average is performed as a
time average. In the second method, we compute
the entropy via the Pesin formula' hr = f&,(&)dv,
where &&(&) is the maximum characteristic ex-
ponent at the phase point &. In our case A. &(x) is
a constant and so @~=~,. ~, is calculated as
N 'ln!!DT"v!!,where v is an arbitrary normal-
ized vector, D1'is given by

ar/ar, sr/8 y,
ay/ar, ay/ay,

and & has been chosen suitably large. This is es-
sentially the same method used by Benettin and
Strelcyn' to compute the entropy of the stadium.
In the final method we use the expression &~
= lpdv, where p is the largest characteristic
value of DT. We perform the phase average as

&r —(- 2+ 0.02)lnR, R & 0.05, (5)

where 0.02 is a conservative estimate of the con-
sistency of the numerical data. Note that the
curve of @~ vs R for the square case is trans-
lated upward by roughly In(2/&3) from the similar
curve in the triangular case. This is reasonable
since v 3/2 is the ra. tio of the areas of unit cells
of both cases.

Analytically, we can proceed as follows. The
continued fraction in (4) contains only positive
fractions, so that

! a time average.
All three methods appear to give the same val-

ue of the entropy for each R (( z ). Thus it ap-
pears that the conclusion of Pesin's theorem is
correct in our case though the assumption for it
is not satisfied. The results are given for the
square-lattice and the triangular-lattice Lorentz-
gas" cases in Fig. 2. Our numerical asymptotic
relation for the T-map entropy is

1 R R0( ~( cosp i( ~-2R '/cosy, +1/(7, + ~ ~ ~ ) —2R '/cosy, 2 ' 2
'

Thus ~~ can be written
2'tIR

kr=(4') '
0

37'/2
dy ln 1+ ' + ' (- cosy),

m/2 7+ L9R R cosy

where &is a function such that!0! (2. We can rewrite this into

2 It'R

k, =(4~R) ' dr
0

3m/2

/2
dpln —cosy +I 8 = ln7 8 +1+I R .

27
~ cosy (6)
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FIG. 3. Graph of In&.) —(Inv) vs R, the radius of the
scatterer. We estimate (from the consistency of the
numerica1 data) the error in In(v) —(Iny) to be +0.01.
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lims, (&ln7) —in&a)) = const. (10)

checked in the triangula. r lattice case. Actually,
our numerical results suggest a far stronger con-
jecture:

FIG. 2. Entropy of the 7' map vs the radius of the
obstacle. Upper curve is for the square lattice. Lower
curve is for the triangular lattice. In both cases, the
lattice spacing is always chosen to be 1.

h~ - —2 LnR. (6)

Since our billiard is without finite horizon, i.e. ,
w is not bounded from above, we can have very
long free paths. Actually, the mean square free
time &r') is not finite. Thus there is definitely a
long-time tail in the velocity correlation function.
Its origin is easy to understand: very long free
paths. Despite the existence of these long-time
tails, since &r) —1/2R (R —0), a "mean-field"
type argument can give a correct estimate of &~) .
This suggests that for ~" (o.'~1) the contribution
of the long-time tail can be ignored. Thus we
can conjecture

»m, ,&in~&/in&& = i, (9)

We can show that I(R) —rR/4 in the limit R- 0.
We must estimate &inT). Since we can calculate
&w) = —&R/2 = 1/2R, we have

&in~& - in&~) - ln(i/2R) - —i~.
It is not difficult to show that

- I2-gR)j '1m&&in~).

Thus in the limit R- 0, we have the following
rigorous bounds:

——,
' lnR (kr = (T) @ ~~ —21nR + const.

Hence &i)h is of order lnR in the limit R- 0. (5)
and (7) suggest that asymptotically

(see Fig. 3), which, of course, implies (9). (6)
ean be shown even if there are many circular
scatterers of radius R. Thus we may conjecture
that (i) is true in this case as well.

For &-dimensional cases we ean show an anal-
ogous formula to (6) asserting hr- &in7'/R) if the
scatterers are all identical d spheres of radius
R. Again we may expect that &in~) - in&7) and that
&7) is of order R' ' (R-0). Hence Itr- —&lnR,
i.e. , we may conjecture that

ilms 0&T) ~/( —lnR) =d.

VVe can easily generalize this conjecture to cover
the most general case with arbitrary convex seat-
terers. This can be done by introducing a scaling
fa,ctor & of the size of scatterers. If we consider
the uniform shrinkage of scatterers by this fac-
tor, then in the limit e-0 we have (7) with R re-
placed by &.

For the triangular billiard, for R &W3/4 the
maximum free time is unbounded, while for larg-
er values of & there is a finite horizon. We have
examined numerically the entropy of the Z map
around R =W3/4. Our study shows that the en-
tropy is continuous and suggests that it is even
continuously differentiable in a neighborhood of
R = W3/4.

The main message of the conjecture is that we
may completely ignore the fluctuation of the free
time to estimate the leading order of divergence
of &~ in the small-scatterer limit even though
there is no finite horizon and long-time tails
exist. The situation is drastically different when
we try to calculate (7. ) for 2 & n& i.
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