
VOLUME 52, NUMBER ~) PHYSICAL REVIEW LETTERS 27 FEBRUARY 1~)84

Suppression of Period Doubling in Symmetric Systems
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The role of symmetry is examined in systems displaying period-doubling instabilities.
It is found that symmetric orbits will not undergo period doubling except in extraordinary
cases. Such exceptional cases cannot occur in a large class of systems, including the
sinusoidally driven damped pendulum and the Lorenz equations.

PACS numbers: 02.30.+ g

A common instability found in nonlinear dynam-
ical. systems is the period doubling of a periodic
orbit. "' As some parameter is smoothly varied
past a critical value, the limit cycle loses sta-
bility to an orbit having twice this period. When
the limit cycle possesses a symmetry, an inter-
esting phenomenon is observed. A number of
digital and analog investigations have found that
symmetric periodic orbits will first bifurcate to
nonsymmetrical orbits before a period doubling
can occur ~

The necessity of a symmetry-breaking precur-
sor to period doubl. ing has been asserted either
implicitly or explicitly by several investigators 4~

The first explanation attempted in the physics
literature appears to be the discussion by D'Hu-
mieres et a3.' Those authors restructed their
attention to the sinusoidally driven pendulum,
and based their results on the stability analysis
of an expl. icit (though approximate) solution of the
governing equation. More recently, "a heuristic
explanation was offered, based solely on the sym-
metry of the governing equation and the bifurcat-
ing l.imit cycle. It is the purpose of this Letter to
elucidate the role of symmetry in suppressing
period-doubling instabilities. Our discussion
proceeds most naturally in the context of bifurca-
tion theory for mappings. " '4

Before introducing the technical details of our
analysis, let us state the main result of our work.
Broadly put, we conclude that a symmetric per-
iodic orbit can directly bifurcate to a period-
double orbit; however, this can only occur under
exceptional cir cumstances. In particular, we
prove that such exceptional cases cannot arise
in a large class of systems, which incl. udes the
driven damped pendulum.

We begin by defining the symmetry under con-
sideration. Consider the periodically driven sys-
ten (with driving period T) described by an n-
dimensional system of ordinary differential equa-
tions:

x= F(x,t); xeR", F(x, t+T) = F(x,t).

We call. the system (1) symmetric if F satisfies

F(x,t)=-F(-x, t+T/2). (2)

An example of a symmetric system is the driven,
damped pendulum, which is governed by Eq. {1)
with

F(x, t) =
—I~(u+ U'(e)+A cos(2mt/T)

Here, lr is the damping constant, U(8)=cos8, and

A is the driving amplitude.
A general. consequence of the symmetry (2) is

that if x*(t) is a solution, then so is —x*(t+T/2).
We call x*(t) a symmetric solution of period T
if x+(t) = -x+(t+ T/2).

Given any initial. condition x(t,), Eq. (1) may be
integrated to find x at some later time t,. In this
way, the governing equation (1) defines a solution
map

I, '~:R"-R" x(t )-x(t ).
0

Clearly, this map has the property

P 2=P '~ P
tp tg tp

where the open circle denotes composition of
mappings. For periodically driven systems with
driving period T, the map

(4)

x ——Ix, t —t+ T/2,

where I is the nxn unit matrix. Symmetry of the
solution map P,, '2 implies that it commutes with

p tp+T
tp

is cal.led the Poincare map. Without loss of gen-
erality, we set t 0

= 0 for the remainder of this
Letter.

We now make a crucial. observation, upon which
all the results of this Letter hinge. Eo~ syrnme-
tric systems, the Poincare map is the second
iterate of another map To see t.his, observe that
the symmetry (2) may be expressed as
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the symmetry (6), that is

(7)

From (4) and (5), we have

r, P r/2
( I P r/2 I) P r/2 (8)

x —DP(xo)X. (9)

If the eigenvalues P,. of the matrix DP(x, ) all have
modulus l.ess than 1 then x, is asymptotically
stable. As the parameters of the system are
varied, the eigenvalues move around in the com-

T/2

FIG, 1, (g) p = pp T' (t)) p p i +o pp T/2 ~ (C,') p
=-I -p 'i'
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this last step following from (7). The maps are
associative, so that

P=(-I.P r/2)2 (P)2

verifying the italicized statement above. The sit-
uation is depicted in Fig. 1.

Note that any T-periodic orbit of (1) corre-
sponds to a fixed point of P. In contrast, onl. y
a symmetric orbit of (1) corresponds to a fixed
point of P, while a nonsymmetric orbit yields a
two-cycl. e of P.

Other investigators have recognized that the
Poincare map may be decomposed in this way
for specific driven and autonomous symmetric
systems. "'"

We now study the bifurcations of symmetric
orbits. To use the results of bifurcation theo-
ry, ' ' we must have a mapping with no special.
properties. Therefore P, not P, is the correct
map to use for symmetric orbits. We will assume
in what follows that P has no further symmetries
and that P cannot itself be expressed as the square
of another map.

A bifurcation occurs when the fixed point xp of
P loses stability. If xp is stabl. e, then points x
near the fixed point approach xp under iterations
of P. Whether this is the case is determined by
studying the map P l.inearized about xp.

plex pl.ane. A bifurcation is signaled when at
least one eigenvalue exits from the unit circl.e.
The stability of the orbit may al.so be found by
examining the eigenvalues Iu, of DP(x,). For
symmetric orbits, DP(x,) = [DP(x,)]', so that
Iu, = (P,)', whereas for nonsymmetric orbits
DP(x, ) is not the square of another matrix, and

an analogous relation does not hold. It follows
that bifurcations of nonsymmetric orbits are
studied via the full map P.

In what ways may a symmetric orbit lose sta-
bility~ This depends crucially on the nonlinear
terms neglected by the linear map (9). The clas-
sification scheme of bifurcation theory tells us
that if only a single parameter is varied, then
the bifurcation will. al.most surely be one of the
following three types"'~ (these are the codimen-
sion-one bifurcations of the mapping P):

(i) Saddle node. —A single eigenvalue exits from
the unit circle at+1. Two symmetric limit cycles
(i.e., fixed points of P) collide and annihilate.
When the parameter exceeds the critical value,
there are no longer any fixed points in the neigh-
borhood of x„and the solution rapidly evolves to
a different region of phase space. In experiments
this is reflected by a dramatic jump in the sys-
tem's response.

(ii) Symmetry breaking (period do.ubling of

P).—A single eigenvalue exits from the unit cir-
cle on the negative real axis. This gives rise to
a two-cycle of P. As mentioned above, this two-
cycle corresponds to a nonsymmetric period-T
limit cycle.

(iii) IIopf. Apair of c—omplex conjugate eigen-
values (P, p *) crosses the unit circle. Under the
assumption that the eigenvalues satisfy a non-
resonance condition (P"c 1, n =1-4), there is an

invariant torus created (or annihilated) at the
bifurcation.

When two parameters are varied, many other
possibilities exist. Among them is the resonant
case mentioned above, where p =~i. This bifur-
cation is of special interest because x, can lose
stability to a stable four-cycle of P, i.e., P
undergoes period quadhupling, "and thus P under-
goes period doubling. I et us clarify why period'
quadrupling of I' is considered exceptional if it
occurs in a one-parameter system, but unexcep-
tional if it occurs in a two-parameter system.
The point is that there exist infinitesimal pertur-
bations of the former which restore the nonreso-
nance condition @441. In contrast, for the case
of two-parameter systems, all nearby two-param-
eter families will have critical parameter values
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where p =+i.
From the foregoing considerations, we conclude

that a symmetric periodic orbit may undergo
period doubling as a single parameter is varied
through some critical parameter value, but that
this is a highly unlikely prospect.

In fact, for certain systems we can say much
more: We can guarantee that P cannot undergo
period quadrupling even if there are two or more
parameters. For this purpose, it is convenient
to focus on the eigenvalues p ~ of DP(x,). Since
period quadrupling of P corresponds to the pair
P =+i, it follows that DP(x, ) must have two
eigenvalues simultaneously cross the unit circle
at -1. Specifically, we consider the case where
the Poincare mapping is two dimensional [n =2
in Eq. (1)], so that there are precisely two eigen-
values. A general theorem from Floquet theory"
fixes the product of all the eigenvalues to be

H, p, = exp( J;divE(x +(i))d& j. (10)

To understand this relation, note that the left-
hand side of (10) gives the factor by which vol-
umes of phase space expand or contract under
the map P. The right-hand side is obtained by
integrating the change in the infinitesimal comov-
ing volume

1 d (volume)
volume dt

over one period of the orbit.
It follows that if

f, divE(x*(t))dt&0

and the Poincare section is two' dimensional, the
symmetric orbit x*(t) cannot undergo period
doubling since this would require p, p, =1 at the
bifurcation.

Of course, (11) is sure to hold when divE(x)
is negative for all x. For example, consider the
class of systems (3) describing the motion of a
damped, driven oscillator in any symmetric
potential U(8). We have

divE =89/s9+ B~/B~= -K,

with ~ a constant. Note that the driving term does
not contribute to the divergence, although it does
feed energy into the system.

We may interpret these results in a very physi-
cal way: if P is two dimensional and both eigen-
values are equal to -1, then DP(x, ) is an area-
preserving map but this is impossible in a pure-
ly dissipative system [i.e. , when divE(x) 0 for
all x].

In fact, any Hopf bifurcation (p, = p, * =e'") of
symmetric or nonsymmetric orbits is impossible
in dissipative systems with two-dimensional
Poincare maps, since p, p, & 1 for such systems.

We close with three remarks. First, the ex-
perimental signal of a symmetric orbit is the
presence of only odd multiples of the fundamen-
tal frequency. This follows directly from the
definition x*(t + T/2) = -x*(t). At the symmetry-
breaking bifurcation the even harmonics appear.
Second, one can define symmetric period-(2n
+ 1)T orbits by

X*(t+(v+ -')T) = -X*(t).
These orbits are (2n+1)-cycles of P. The re-
sults of this Letter apply to any symmetric or-
bit. In particular, symmetric orbits are often
observed to undergo the symmetry-breaking
bifurcation, followed by the period-doubling
cascade and chaos. This occurs when a fixed
point of P (or P'"") follows the sequence of
bifurcations familiar from one-dimensional
maps. ' Note that the stable three-cycle of P
in the window" of the chaotic region is a sym-
metric period-3T limit cycle. This orbit itself
undergoes the symmetry-breaking bifurcation
before the period-doubling cascade.

Finally, our results can be extended in various
ways, the most important being to autonomous
(i.e. , time-independent) systems. In addition,
modes with the -symmetry y -y can be present
together with modes obeying the symmetry x- -x.
In these systems, as well as (1) and (2), the Poin-
care map of a symmetric orbit is the square of
another map. Thus, our analysis can be applied
(for instance) to the model equations describing
doubly diffusive convection. ' The symmetry-
breaking bifurcation has been observed in numeri-
cal studies of convection. ""'"Furthermore,
one can prove that symmetric orbits of purely
dissipative three-dimensional autonomous sys-
tems- —such as the Lorenz equations'" —cannot
directly undergo a period-doubling bifurcation.
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