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Stochasticity and Transport in Hamiltonian Systems
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'The theory of transport in nonlinear dynamics is developed in terms of "leaky" bar-
riers which remain when invariant tori are destroyed. A critical exponent for transport
times across destroyed tori is obtained which explains numerical results of Chirikov.
'The combined effects of many destroyed tori lead to power-law decay of correlations ob-
served in many computations.
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With the proof of the Kolmogorov-Arnol. 'd-
Moser (KAM) theorem, ' our knowledge of the
regular motion in Hamiltonian systems was given
a firm foundation. An integrable Hamiltonian
system with N degrees of freedom has N invar-
iants (such as energy, momentum, etc.), which
restrict motion in the 2N-dimensional phase
space to surfaces which are N-dimensional tori.
When a small enough perturbation is added to an
integrable Hamiltonian, the KAM theorem as-
serts that most of the invariant tori will still
exist. Complementary results from numerical
experiments lead one to describe motion in re-
gions of phase space where tori are destroyed
as irregular or stochastic. The sense in which
the stochastic motion can be described as random
has, however, proved elusive. In this Letter we
report the beginning of a detailed description of
stochasticity in two-degree-of -freedom systems. '

It is convenient to use the surface-of-section
method to reduce the Hamiltonian flow to an area-
preserving map. The intersection of an invariant
torus with a surface of section is topologieally a
circle, which we will refer to simply as a circle.
Orbits on the torus wind around helically and will
repeatedly pierce the surface at points on the
circle which rotate with some average frequency
v. To be definite take a radial coordinate p and
an angular coordinate x (with period 1) and repre-

sent the surface of section map by (x„p,) =T(x„
p, ) where T(x+1,p) =T(x,p). A rotational in-
variant circle of frequency v is a continuous
curve parametrized by t with -~ &t & ~ such that
(x (t + v ),p (t + v) ) = T(x (t ),p (t )) and (x (t + 1),p (t + 1))
=(x(t )+1,p(t )).

Let us follow an invariant circle with given fre-
quency as a perturbation with magnitude governed
by a parameter k is added to the map. If the fre-
quency is "sufficiently irrational" (far from low-
order rationale) the KAM theorem implies that
the invariant circle will exist at finite values of
the parameter k. Quite generally we expect that
invariant circles persist up to some critical val-
ue of the parameter, k, (v). It is typically zero
for rational, v. Above k, an invariant circle with
rational frequency v =m/n is replaced by a chain
of n islands, while one with irrational frequency
develops gaps. ' In the latter case the existence
of a single gap implies that there are an infinity
of gaps since the iterates of the end points of a
gap rotate with an irrational frequency. Since a
set, like the destroyed circle, consisting of a
curve deleting a dense set of open intervals is a
Cantor set, the remnant of the invariant torus is
called a cantorus. In Fig. 1 a cantorus for the
standard or Chirikov- Taylor map4 is displayed.

Motion in the neighborhood of a cantorus ap-
pears stochastic and conversely stochastic re-
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FIG. 2. Construction of the stable manifold of a
cantorus by interating backwards from a far future
gap,
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FIG. l. A cantorus of the standard map with fre-
quency (1+ 15}/2 for a parameter value 0.03 above
critical in polar coordinates.

gions appear to be stratified by these re~nants
of destroyed circles. Since the motion on the
cantorus has a definite rotation frequency, a
point near a cantorus will for some finite time
appear to rotate with the same frequency. How-
ever, the cantori are unstable invariant sets so
that nearby orbits will eventually diverge from
them. The importance of the cantori in stochastic
motion and a transport theory to describe the
flow through stochastic regions are the primary
results of this Letter.

We believe that cantori are the principal im-
pediments to transport, and present numerical
evidence supporting this in Ref. 2. Recall that a
torus partitions three-dimensional space into two
regions, and thus an invariant torus forms an
absolute barrier to the flow. The cantorus pro-
vides a leaky barrier: Any orbit which escapes
from one region must go through the gaps.

The flux through the gaps may be visualized by
constructing the leaky barrier from the stable
and unstable manifolds of the cantorus. Focus
attention on one of the largest gaps in the cantor-
us. Since the total length of the gaps must be
finite, the iterates of this gap as t- ~ must have
widths which approach zero. Area preservation
implies that this longitudinal stability of the end

points of the gap must be accompanied by a trans-
verse instability. The future invariant, or stable,
manifold of the cantorus may be constructed by

joining the end points of the tth iterate of the
large gap with a curve C(t) and iterating back to
t= 0 (Fig. 2) to obtain a curve C(0) in the large
gap. As the iteration time goes to infinity C(0)
approaches an invariant form C ' = lim, T 'C(t)
which, because of the longitudinal stretching, is
a smooth curve connecting the end points of the
large gap. A point on C' approaches the canto-
rus in the future. The unstable manifold, C, is
constructed similarly with use of a curve through
a far past iterate of the large gap, noting that
the width must go to zero as t ——~ as well. If
the cantorus has only a single family of gaps
(all gaps are iterates of any one), then the posi-
tive iterates of C' and negative iterates of C
then form a curve which closes all the gaps ex-
cept that it has two pieces in the gap at t =0.
Were C' and C to coincide, this curve would

be an 1nvar1ant circle with rotation number v

but this contradicts the assumption k)k, (v).
These curves must therefore be different and en-
close an area (Fig. 3). We call this structure the
turnstile. In some cases there may be more than
one family of gaps and then each has its own

turnstile. We have constructed the stable and un-
stable manifolds for the standard map obtaining
a structure like that in Fig. 3.

In Fig. 3 C' and C cross at precisely one point
(this may, however, not be true in general) which
is homoclinic to the end points of the gap: It ap-
proaches the cantorus in both directions of time.
The area enclosed by each lobe of these mani-
folds, 4W, represents the flux through the can-
torus ——the area which crosses the cantorus per
iteration. This follows because a poi.nt in the left
lobe (for example) of the turnstile is both inside
the unstable manifold and outside the stable mani-
fold, so that a past iterate is inside the barrier
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FlG. 3. Sketch of the turnstile in the gap at t =0, and

partial barrier constructed from the stable and unstable
manifolds.
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while a future iterate is outside. The area of the
right half of the turnstile gives, correspondingly,
the inward flux.

Thus AW is like a local transport coefficient:
It is the flux of trajectories across a destroyed
invariant circle. It can be shown' that 4W is re-
lated to an action, which is defined as the irite-
gral of the Lagrangian along an orbit. AW is the
difference between the action of the orbits formed
from a gap end point and that of the homoclinic
point. Mather has used precisely this quantity in
a proof of the existence of invariant circles. ' He
shows that AS'~ 0 and when 4%'=0 an invariant
circle exists. Our construction has provided a
physical interpretation for 4R'.

The most important cantori will be those that
are slightly supercritical and for which ATV is
still small. This is just the case when Hamil-
tonian systems have universal scaling proper-
ties' describing motion in the neighborhood of the
cantorus. Application' of this analysis yields a
critical exponent for AR'.

~W~ [ k -k, (v) j ", g=3.011 722,

for the case when v is a "noble" number. Noble
irrationals are those which are most difficult to
approximate by rationals, and consequently ap-
pear to be most resistant to perturbation' .hat
is, k, (v) is locally maximum when v is noble.
The fact that 4$' grows so slowly with k explains
why it is extremely difficult to detect the break-
ing of invariant circles by looking for trajector-
ies which cross the cantorus: As an example 10'
iterations of a simple map like the standard map
gives only 1/0 accuracy in k, .' The exponent q
can be compared with numerical experiments of
Chirikov4 for the transition time from one region
to another. Chirikov measures that this time
goes to infinity with an exponent -2.55 while our
theory gives -q since the time is proportional to
the inverse of the flux. The difference between
these results is probably due to Chirikov's use
of data far from critical to obtain a fit to power-
law scaling.

A global picture of transport is obtained by con-
sidering the combined effect of the barriers of
all the cantori. ' In the simplest description only
those most resistant barriers with locally mini-
mum 4W are kept. If we label the regions bor-
dered by two such cantori with integers, then
b,R', , is the area of the turnstile in the cantorus
between regionsi and j. If the area of the stochas-
tic component in region i is A, then we can assume
that the probability that an orbit lands in the turn-

stile is &W, , /A, . If this is small then many
iterations of the map mill be necessary before an
orbit crosses the barrier, giving an effective
loss of memory, so that we can use a Markovian
approximation with a transition probability per
step p(i-j ) = aW, , jA, '

This picture of transport can be used to predict
confinement times, e.g. , for guiding centers in
tokamaks. It also explains the long-time corre-
lations seen in dynamical systems with regular
and irregular regions. As a stochastic orbit ap-
proaches an invariant circle it must traverse
barriers with 4W;, -0. An orbit trapped in re-
gion i has a. time constant roughly T, -A, ~,hW„,
this time goes to infinity as the invariant circle
is approached [for a critical noble circle r,
-(2.618)' where the regions A; are chosen to
represent successive continued-f raction approxi-
mations to the noble frequency]. This infinite
sequence of time constants leads to a power-law.
decay of correlations similar to that observed in
many systems. '

It is no more difficult to include the effect of
island chains as well as the rotational cantori on
transport. Any stable periodic orbit of period n
will be surrounded by a chain of invariant circles,
that is, circles invariant under T". Beyond the
outermost circle will be chains of cantori as well.
To include these cantori in the Markovian model
a transition probability p(i —j) must be added for
each, so that for each region there are branches
corresponding to the hierarchy of islands around
islands.

The theory of barriers and turnstiles has many
implications in nonlinear dynamics and for sto-
chasticity in dynamical systems. The construc-
tion of barriers provides a set of dynamical vari-
ables which approximate true action-angle var-
iables. The action, W, of a particular barrier
(the phase-space area contained on one side) has
a natural uncertainty, hW, associated with its
nonconservation. An angle variable can be de-
fined which obeys 0' = 6I+ v on a barrier, except
when 8 falls in the turnstile in which case v

changes as the trajectory is transported to a new
barrier. No other choice of action variables
would be better conserved, or equivalently have
a smaller flux. The idea of minimizing flux goes
back to Wigner' and similar ideas have been
developed in parallel to ours by Bensimon and
Kadanoff. ' It may be possible to obtain a rigor-
ous transport theory utilizing the approximate
action-angle variables.

Another application is to semiclassical quan-
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tization. As it is usually formulated semiclas-
sical theory is only defined when the classical
tori exist. Since, however, quantum mechanics
effectively averages over areas smaller than 5
one may be able to quantize using approximate
tori formed from barriers with hlV&h. Of course
it may not usually happen that a cantorus at the
appropriate value of the action (W-uh) will have
small enough AW, but this technique may at
least extend semiclassical theory into the sto-
chastic regime. Reinhardt and co-workers"
have used the similar, but less precise, concept
of "vague" tori in their semiclassical theory.

Finally we mention that in systems with more
than two degrees of freedom, invariant tori do
not partition the energy surface. Therefore, at
first sight the cantori do not appear to be im-
portant in higher dimensions. It is interesting
to note, however, that Arnol'd diffusion is cal-
culated with use of Melnikov's integral4 which
measures the degree to which a separatrix is
broken and has parallels with Mather's ER'.
Since in two degrees of freedom the flux across
separatrices is larger than that across cantori,
it could be that higher-dimensional cantori play
an important role in Arnold diffusion.
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