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Double-Differential Distributions Produced by Collisional Electron Loss into the
Continuum for the Ho-He System

W. Meckba. ch, R. tidal, P. Focke, I. B. Nemirovsky, and E. Gonzalez Lepera
Centro Atomico Bariloche, Comision Nacional de Energy Atomica, 8400-Bariloche, Argentina, and

Instituto Balseiro, Comision Nacional de Energza Atomica and Universidad Nacional
de Cuyo, 8400-Bariloche, Argentina

(Received 22 August 1983)

Detailed double-differential distributions in energy and angle of emission of electrons
ejected into the continuum by collisional ionization of H projectiles with He are meas-
ured. Anisotropies of the resulting three-dimensional cusps are discussed in terms of
contour lines taken at different levels. They show a structure that calls for an inclusion
of higher terms in the expansion of the cross section, not contained in first Born cal-
culations of Day and of Briggs and Day.

PACS numbers: 34.50.Hc

It is the purpose of the present work to meas-
ure and discuss double-differential distributions
of electrons resulting from collisional ionization
of energet. ic projectiles that bring bound elec-
trons into a collision with a target atom. The
simplest possible projectile containing one elec-
tron, H, was chosen; the target was He. The
main contribution to this electron emission
stems from weak collisions, that is collisions
of low momentum transfer,

In a reference frame moving with the projectile
of velocity v;, electrons of low speed &'«&; are
subject to the Coulomb attraction by the residual
projectile ion. In the context of "electron trans-
fer to the continuum (ETC)" this process of pro-
jectile ionization is known as "electron loss to
the continuum (ELC)." The other possible ETC
process, "electron capture to the continuum
(ECC)," implies a real transfer of an electron
from a target bound state into a low-lying con-
tinuum state of an ionic projectile. We deal in
the laboratory frame with electrons of velocities
v=v;, that is speeds close to &; and small emis-
sion angles 0 defined with reference to the direc-
tion of the ion beam. These electrons are meas-
ured with relative ease.

Theoretical discussions of both ETC processes
lead to a cross section which diverges when v
-v;; &'-0 a.nd can be written as'

40' AO 1

R &v' Iv'
I

= —,F(v', cos&'; v, ).

Here ~' is the pola. r angle of v', defined in the
moving frame and measured with respect to the
direction of v;.

Early theoretical discussions of ECC' and sub-
sequently also of ELC' led to gv', cos8; v,. )
= F(v, ), that is to a cross section whose shape is
only determined by the divergent factor l/v'.
Deviations from this simple spherically sym-
metrical shape, in the sense of asymmetries and
anisotropie structure, are introduced through a
dependence of + on &' and O'. An expansion of
the transition probability of ETC processes, in-
troduced by Garibotti, 4 serves to put such devi-
ations into evidence. It leads to

, = —,[ 5 B, '"'(v,. )v'"P„(cosa')]. (2)

Most of the experiments on ETC to date have
been performed by measuring energy or velocity
distributions of electrons emitted in the direction
of the ion beam. As a result of convolution of
&o'/&v with the acceptance in angle and energy or
speed of an electron spectrometer used for meas-
urement, which can be characterized by a cylin-
drical resolution volume defined in v space, '
sha. rp cusp-shaped peaks, as measured for the
first time by Crooks and Rudd, ' are obtained,
For the ease of ECC such "longitudinal" electron
spectra, exhibit a strong asymmetry in the sense
of an enhancement of the emission of lower-ener-
gy electrons. This has been observed with heavy'
and light" projectiles and has been discussed in
Ref. 4 by maintaining terms up to + = 1 and j = 1
in Eq. (2). The term

(&, '"/v')&, (co»')= (&,"'/v')co»' (&,"' &o)

mainly accounts for the appearance of these nega-
tively skewed cusps and has been used a,s an indi-
cator' of the contributions of second-order Born
terms to dv/dv. Higher terms in Eq. (2) also re-
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suit from a multiple-scattering approach of Gari-
botti and Miraglia. '

Measurements performed with heavy ions re-
vealed that the negative cusp skewness disappears
when ELC becomes predominant. ' For ELC, the
target atom plays the role of an ionizing projec-
tile in the moving frame of reference, and a weak
collisional interaction is sufficient to emit elec-
trons into low-lying projectile continuum states.
Consequently a. first Born-perturbation treatment
was considered suitable by Day" and Briggs and
Day" to describe details of the resulting electron
distribution. This first-Born calculation does
not lead to diverging asymmetric terms in the
cross section [Eq. (2)], that is terms with & = 0
and odd j; however, terms with & = 0 and even j
may appear, The cited discussion is limited to
the inclusion of only two terms, characterized
by n= 0, j =0 and 2; that is

[B (0) + f1 (0 & P (cosgl)]
dv v

A= —,[1+Pp, (cos&')]
v

A P 3P
[1 ——+ —cos'()' ] .

v 2 2

We considered that a most sensible and direct
test for anisotropies would be obtained from con-
tour lines represented in polar coordinates as a
function of &' and L9', obtained from three-dimen-
sional cusps measured as a function of electron
energy or speed and angle of emission.

In Figs. 1(a) and 1(b) we show contour lines of
&o/dv as they result from Eq. (3) for —1-p-0
and 0 ~P ~+ 2. At different chosen levels these
contour lines repeat themselves in shape, but
not in size. However, because of the remarkable
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influence that results from convolution with the
instrumental resolution volume, these contour
lines suffer deformations which depend on their
level and are strongest close to the peak top. In
Fig. 2 we show such contour lines as obtained
from convolution with our experimental resolu-
tions (see below) for P= —1, +0.15, and+1. It is
noteworthy that for P=+1 two separate peaks are
distinguished. They correspond to two almost
symmetric maxima, as predicted by Day" for
longitudinal spectra when p&+0. 5. These look
like the cusp inversion discussed recently by
Burgdorfer" for the case of incident 2p, projec-
tiles.

Proton beams of 105-keV energy, delivered by
the Bariloche Cockcroft-Walton accelerator,
were neutralized in part by electron capture in
a differentially pumped He-gas cell. The emerg-
ing protons were electrostatically deflected out
of the beam; the H' beam entered our coaxial
cylindric electron spectrometer. ' The target con-
sisted of an atomic He beam emerging from the
0.25-mm bore of a hypodermic needle. 'The Fara-
day cup used as a monitor of collected beam par-
ticles was provided with a thin foil through which
the entering H' beam was charge equilibrated";
the ensuing proton. fract. ion was measured. A
half-angle of the electron acceptance cone into
the spectrometer of ~o=0. 5 =0.87X10 ' rad was
chosen. The relative resolution in electron ener-
gy &, or speed v, was

R=(AE, )HwHM/2E, = (At')H»M/t =0.08x10 '

(HWHM denotes half width at half maximum).
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FIG. 1. Contour lines of do/dv given by Eq. (3) for
different values of p: (a) solid curve, p =0; short-
dashed curve, p=+ 0.15; dot-dashed curve, p=+ 0.5;
dotted curve, p=+ 1; long-dashed curve, p=+ 2;
(b) solid curve P=O short-dashed curve, P=- 0.15~

dotted curve, p= —0.5; long-dashed curve, p= —1.

FIG. 2. Contour lines for different p, obtained from
convolution of do/dv [Eq. (3)J with t)0=0.5', Ei/00=0. 09.
Levels, referred to 1 at origin, are, for p = —1, (dot)
1, (curves) 0.75, 0.5, 0.25, 0.125; for p=+ 0.15,
(dot) 1, (curves} 0.9, 0.75, 0.5, 0.25, 0.125; for p
=+ 1, (dot) 1, (curves) 1.2, 0.9, 0.75, 0.5. Scales
represent longitudinal and transverse components of
v'/v;, multiplied by 10~.
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and & determine a "resolution volume" in v,
space, ' given by a flat cylinder of diameter 20,v
and height 2R~ (&/&o=0. 09).

Electron spectra measured at ~= 0 confirmed
the symmetry of "longitudinal" cusps, as it re-
sults from the first-Born treatment of Day" and
Briggs and Day" [Eq. (3)]. This enabled us to
compare measured anisotropies with those re-
sulting from this theory. In order to obtain the
desired three-dimensional eusps, we had to
measure spectra at small angles («7'), where
most of the peak-to-tail transition of these cusps
occurs. Because the angular acceptance of meas-
ured electrons is determined at their exit, our
electron spectrometer permitted such measure-
ments without intercepting the ion beam. This
feature, already introduced in an earlier but dif-
ferent design by McGowan, "allows us to monitor
the ion beam by collection in a Faraday cup at all
angles, including small ~, and avoids the dis-
turbing appearance of background electrons pro-
duced by ions hitting the face of the analyzer en-
trance apertures. "

Spectra at angles 0&0 were obtained by turning
the inner cylinder (Fig. 2 of Ref. 4), together
with the electron exit tube and detector mount,
through an azimuthal angle P around the spec-
trometer axis. In this way the plane containing
the path of the deflected and measured electrons
was also turned around this axis. The angle 0
resulted from the azimuth P as & = 2 sin '(sin~P
xsino. ). Here o.=42. 3 is the angle at which the
central ray of the measured electron beam cuts
the spectrometer axis.

Figure 3 shows a three-dimensional ELC cusp
that results from spectra obtained as a function
of electron energy &, at. different angles ~. To
our knowledge this is the first time such detailed
experimental information about an ETC process
has been presented. Menendez et L. "measured
ELC distributions at different ~ up to almost 180 .
Their work, obtained with different projectiles
including H, is not directly related to the pres-
ent study.

Distributions like that shown in Fig. 3 permit
the desired evaluation of anisotropy as a function
of ~' and its comparison with theory by drawing
contour lines obtained from the experimental
three-dimensional cusps at prefixed fractional
levels of the peak height, as shown in Fig. 4. A
comparison with the theory of Day" and Briggs
and Day" leads to the following conclusions:

Apparently the experimental contours are ap-

FIG. 3. Three-dimensional ELC cusp measured,
as a function of electron energy E~ and emission angle
0, with 105-keV H interacting with He.
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FIG. 4. Experimental contour lines obtained from
the cusp of Fig. 3 and taken at the indicated fractional
levels of the peak height.

proximated best by the convoluted theoretical con-
tour lines that result from Eq. (3) for P =+ 0.15.
However, we are not yet able to make a quantita-
tive statement about a value of P because care
must be taken with respect to the experimental
effective beam-gas interaction volume as a func-
tion of ~.

A quite noticeable difference between experi-
ment and theory consists in that the experimental
contour lines show a superposed anisotropic
structure that is more complicated than any de-
formations which can be expected fzom Eq. (3).
It is obvious that, beginning with a I', term, high-
er terms with even j & 2 must be introduced in
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the expansion of the cross section in order to ac-
count for this additional structure.

The present work represents a first step in the
investigation of details of the emission of low-
velocity electrons produced by collisional ioniza-
tion in the frame of a moving projectile. Such
studies also permit conclusions about the shape
of double-differential distributions of very low-
velocity electrons emitted from collisionally
ionized atomic targets which are not easily ac-
cessible to direct measurements.
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