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The authors study a symmetric two-state system with "bare" tunneling frequency Ao,
dimensionless Ohmic dissipation coefficient o. , and heat-bath cutoff ~, . Defining 4„:—d o(6 0/w~) ~

"
& for n & 1 and 4„:—0 for e & 1, they find to lowest order in Qr/ac, k'T/

A~, (a) for all ek T» AA „, incoherent relaxation at a rate {4o /, ) (~7t/2) l r(~)/I"(~+ 2)1
x (&k T/S~ ) " ' ~ (b) for T = 0, 2 & n & 1, incoherent relaxation at a rate -6„; and (c) f«
T = 0, 0&+ & 2, damped oscillations with frequency —A„and Q factor 2 cot[(~/2)n/(1-eN
plus a power-law background.

PACS numbers: 05.30.-d, 03.65.-w, 71.25.Mg, 74.50.+r

The so-called spin-boson Hamiltonian

I' 2

2 lpga ~

(with o„and o, Pauli matrices) can describe a
wide variety of problems in which an effectivel. y
two-state system is coupled to its environment,
and many authors have used it to study the dy-
namics of such systems. ' For this problem all
necessary information about the effects of the en-
vironment is contained in the spectral density

Z((o)= (m/2)Q„(C '/m (u )5((u —u) ).
The case of "Ohmic" dissipation [J(tu) = rt& for td

«cu„where co, is a cutoff frequency large com-
pared to 6,j presents many special features. '
Here we shall study the system dynamics for this
case as a function of temperature T and the di-
mensionless dissipation coefficient

o. =- q q, '/2m',

under the assumption' 6,/e, «1 (the limit of
primary interest for the "macroscopic quantum
coherence" problem' ). The problem is the fol-
lowing. " Given that for t& 0 the system is known
to be localized in the state corresponding to 0,
=+1 [e.g. , by a sufficiently strong biasing poten-
tial V(t)=- —V, o, 0(-t)], what is the value of P(t)
=-(o,(t)) for t & 0, and in particular how far is the
characteristic oscillatory behavior P(t) = cosh, t
of the uncoupled system preserved for finite n~
Our cal.culation covers wide regions of the (a, T)
pl.ane: It reproduces i~te~ alia as special cases
both the Bray-Moore' prediction of exponential
rel. axation with T o- T " " for a & 1 (but with a
diff erent pref actor) and, in the limit a - 0 only,

!the high-temperature (k T»kb, ,/o. ) limit of the
predictions of Harris and Silbey' (exponential
relaxation with ~cc a T). Some features of our
results appear also in the recent work of Zwer-
ger.

We start by writing down an exact and general
expression for P(t) as a power series in &,. For
reasons of space we merely sketch the derivation
here. ' We represent P(t) in terms of a double
path integral' over the possible paths of the sys-
tem between the two states, and of the environ-
ment over its continuum of states. Each transi-
tion between different system states is associated
with a transition amplitude ~ i &,dt/2, while the
behavior of the environment is described by the
usual action factor. Integrating out the environ-
ment in the usual way, ' we obtain a double func-
tional integral over paths x(t), y(t) = a-', qo of the
system, which are now linked by the influence
functional. ' Now comes the crucial step: We re-
write the expression as a single path integral
over fou~ states, corresponding to the four ele-
ments of the density matrix. In the contribution
associated with a factor b '", the system makes
transitions at times t;, i =1,2. . ., 2n, returning
finally to its original state x = y =+ po/2. For
times between t», and t» (j=1, 2, . . . , n) it is in
a ' nondiagonal" state (x = -y): We call such peri-
ods blips"; for times between t„,and t», (and
initially and finally) it is in a diagonal state
(x =+y) (' sojourns"). After some calculation we

(4)
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where the (partially averaged) influence functional F is given by the expression

p =exp — ' $,. 2 " ~ exp — '- Akhlk cos
j=l (6 =+lj. )- P, k=1 k=0 j=k+1

k&j

and where t, equals —~ by definition. The func-
tions S +j k $ and X,. „are given by

(5)

(6a) 7 ' =(t),,2/cu, )E, (S)

Q, (t)
J (&u)

Sln~t, (7a)

Q, (t) d ~ 2 (1 —cos~t ) coth(z(6 I~) . (7b)
J((d)

Note that the case j =k+ 1 in E(I. (Gc) produces
an effective self-interaction of the jth blip in the
limit t», -t», —

We now observe that under a rather common
condition it is possible to make a drastic simplifi-
cation of the expression (5). Suppose that the
characteristic time scale over which P(t) varies
appreciably (which must eventually be determined
self-consistently as an output of the argument) is
some time t,. Then it is evident that the average
length of a blip together with its neighboring so-
journ will be of order I,. Now suppose that in a
region t, ~ t & t, (where t, is some time much
smaller than t,) the function Q, (t) is sufficiently
large that the first term in (5) effectively vanish-
es (a more exact criterion will emerge below).
The effect is to limit the integration variable (t»
-t», ) to a region of order t,«t, . That is, the
average length of the blips is now small compared
to the spacing between them; they form in effect
a ' dilute gas." The form of I'" now simplifies
enormously: We can now neglect all interblip
interactions, which will contribute at most cor-
rections of the order of t, /t„and also the phase
factors X, k [E(I. (6e)] except for the one corre-
sponding to j =0+1, which contributes a factor
cos[((jt,'/)lk)Q, (t» —t», )].P is now a simple
product of terms of the form f(t» —t», ), and
the series (4) can be summed explicitly to give
the result'

P(t) =e "',
where the incoherent relaxation time T is given

j k P2k, 2j-l+ 2k-l, 2j 2k, 2j 2k-l, 2j-l t ( b)

j k 2j,2k+1+~2j 1 ~ 2-k ~2j, 2k + j21-k2+,1 n (6c)

where R„„=—Q, (t„—t ), P„—= Q, (t„—t„), and the
functions Q„Q, are

and +0 by

0 1
Xp

0 t dg yp

This result is generally true when the condition
stated above is satisfied: It does not depend on

the assumption th, /~, «1, nor on the particular
form of J(~).

I et us now specialize to the case of Ohmic dis-
sipation. For convenience we choose the cutoff
behavior of &(~) to have the form'

&(~) =1}~exp(- ~/~, ).
With the choice (11) the functions Q, (t) and Q, (t)
are given by the following expressions:

Q, (t) =l} tan '(~, t),
t jt

Q, (t ) = n tl In(1 + ~,'t *) +n in —nin h —) . (13)

Substituting (12) and (13) into (10), we find for all

(14)

(t /~ )
tx/(1-tx) ~ ( 1

0, u&1, (15)

we see that the condition for self-consistency is,
for + &1,

o.i"(n + ~1)
(16)

i.e., roughly, o(kT/jt » th„. For o'. & 1, the condi-
tion is satisfied for all 'I'.

I et us now turn to the case where (16) is not
satisfied. We shall discuss here' only the zero-

We note that the coefficient of the power law in
(14) tends to (2n) ' for o. -0 and to )l/2 for & =-', .

We now examine the self-consistency of our
procedure. It will be self-consistent if the effec-
tive cutoff on the length of a blip, which from (10)-
(13) can be seen to be of order pk/(1, is small com-
pared to the time 7 calculated from (S). Defining
the renormalized tunneling frequency &„ by the
relation
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temperature case, which should show most of the
interesting features. First we consider the re-
gion ~&& &1. Here an argument similar to the
above, but with the integral (10) defining E, cut
off at an upper limit of the order of the (to be de-
termined) relaxation time ~, would predict inco-
herent relaxation at a rate &„)2(n), where IT(n) is
generally of order unity. However, a Laplace-
transform analysis due to Garg' indicates that
there is in addition a power-law background alge-
braically identical to that found below for « ~.
We plan to discuss this in more detail elsewhere.

Finally we turn to the region of most practical
interest in the quantum coherence" problem, '
namely zero temperature and 0- o.'- ~. Substitu-

!

tion of formulas (12) and (13) (with P =~) into

(17)

where the function f(x) is defined by the power-
series expansion

(6a)-(6c) gives the influence functional (5). Now

the time scale of the problem is certainly no
shorter than &p

' and hence is very large com-
pared to , '. Hence for e& ~ we may ignore
the 1 in the logarithm in (13) by comparison with
&,'t', and also take Q, (T) =TT/2 for values of ~

other than zero [recall that the last term in X, ,
is Q(0) when j =&+ 1]. Then by introducing new
variables z; =t; /t, we can immediately conclude
that P(t) can be a function only of the dimension-
less variable (&„t)' ". In fact, incorporating
some n-dependent factors into the variable for
subsequent convenience, we can write

P(t) =f ( [I"(1 —2n) cosTTn]" 2(~„t)' "),

f( ) = 8 (-1)"&..(n)x'",
n=p

E,„(n) =—[I'(1 —2n)] "f dz, „f dz,„,.. fd. z, Q(z„-z„.,) '"

)((2 g ) g ( 2k '-1)( 2k-1 2j (19)
(6j = k lj j,k= 1 -( 2k 2j}( 2k-1 2j-1)

k&j

Let us call the value of g„(n) which would be obtained by neglecting the second (interblip correlation)
factor in (19) Ã2„o (n), and the form of f(x) so obtained p(x). Moreover let us define the quantities

(20)

A (n) = lim k,„(n)/[1+q(n) ]"I1,„(o)(n). (21)

Evidently q(n) tends to 0 [and A(n) to 1] both to first order in n and for n - ~. We have strong though
not rigorous arguments' to indicate that q(n) is at most a few percent for all n. Then f(x) is equal to
A(n)q)(x[1+ q(n)]) plus a function S(x) which is a sum of powers of x whose coefficients oscillate in

sign and decrease with n faster than K2„(0), and which vanishes with q(n). Since the physical meaning
of P(t) implies that S(x) must tend to zero for large x (cf. below), we can presumably safely assume
that S vanishes for large x faster than Tj)(x); since it is anyway of order q(n), it should not play a major
role [this assumption could be checked by computing the first few &2„(n) numerically]. Now it is
straightforward to show that K2„(o)(n) = I' '(2n(1 —n) +1), and so from the above argument we have

P(t) =A(n) Q (-1)"y'"(' "'/I'(2n(l —n) + 1)+bP(t),
n=p

y -=Ql +q(n) ](cosign) [I'(1 —2n) jj"2(' '~„t -=t .TT t,

(22)

(23)

where tkP(t) is the contribution arising from S(x}. The infinite series in (22) may be evaluated by using
an integral representation of the inverse I' function' and closing the contour in the upper half-plane.
As a result we find

A(n) TT n r TT

P(t) = CCC l ff cCS t CXP i ff Hill t
I

+P (t) +tlP(t)
j. —cv 2 ]. —Qjg $ —Q

(24)

where P;„(t) is a cut' contribution which is negative for all t and at large t gives a power-law decay,
P;„,(t) = —)T 'sin(2TTn)i'(2 —2n)(&, t} "' '. [This incoherent" contribution vanishes for n-0, and



VOLUME 52, NUMBER PHYSICAL REVIEW LETTERS 2 JANUARY 1984

its power-law tail vanishes for & —~, leaving a term —exp(- &, I I t).] Although for sufficiently long
times this term will of course dominate the behavior (except for & =0 and o.' = ~), from the perspective
of the

' macroscopic Iluantum coherence" problem' (which primarily motivated this work) the impor-
tant point is that at relatively short times the coherent oscillations of the undamped system persist
for finite n & ~ with a Q factor which is determined, independently of the unknown factor q(o.'), to be
exactly ~ cot[(&/2)&/(1 —o.') ].
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