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The inertial frame of reference in the neighborhood of a test body provided by the con-
struction of Fermi normal coordinates is generalized to include the effect of the body's
gravitational field. The metric obtained provides a simple physica1 description of rela-
tivistic corrections to the orbital motion of a satellite of the Earth. The main correc-
tion is the nonlinear Schwarzschild field of the Earth; in these coordinates there are also
three much smaller terms arising from the solar tidal influence.
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The intrinsic error in a number of operational
laser ranging systems used to track satellites
such as LAGEOS is now about 3 cm, and may be
expected to decrease to about I cm in a few
years, while modeling errors are currently
about 25 cm, ' Knowledge of higher harmonics in
Earth's gravitational field will continue to im-
prove, while uncertainties in nongravitational
accelerations can be reduced with very dense
satellites in high orbits, by compensation with
drag-free systems, and by measurements with on-
board accelerometers as well as by development
of improved models for periodic drag and radia-
tion-pressure effects. Thus residuals in fitting
of models to precise tracking data may be ex-
pected to improve to the centimeter level in the
next few years. Since Earth's gravitational ra-
dius is p.,= GM, /c'=0. 443 cm, it will soon be
essential to include fractional relativistic corre-
ctions of order p, /r in modeling precise track-
ing of Earth-orbiting spacecraft. A straightfor-
ward description of the relevant relativistic ef-
fects is clearly needed. '

In the case of interplanetary orbits, where

these effects are solely due to the sun, this task
is reduced to the study of the Schwarzschild solu-
tion and is well understood. For near-Earth
satellites, where the potential of the sun and
Earth are comparable, one should use the rela-
tivistic solution to the n-body problem. " The
slow-motion, weak-field (S1VIWF) approximation"
provides a general formalism for calculation of
the required post-Newtonian corrections. But
because of arbitrariness in the coordinates, as
described by gauge freedom, ' the equations of
motion one obtains' do not readily lend thern-
selves to physical interpretation. A comparison
with observation can, be made only by integrating
such equations and constructing in an invariant
manner the physically observed quantities. In
the carrying out of this procedure large terms
tend to cancel out and new terms arise. As a re-
sult, relativistic effects on the orbit of an Earth-
orbiting satellite are not easily describable in
physical terms and have been the subject of some
controversy. '

We shall summarize here the results of work
in which the motion of a test body in the neighbor-
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hood of Earth is described in a particularly con-
venient frame of reference. This frame is the
generalization, in the SMWF approximation, of
the local, inertial frame which can be construct-
ed in the neighborhood of a geodesic in the field
of the sun. The generalization consists in in-
cluding the field of Earth and allowing for non-
linear Earth-sun interactions. In these coordi-
nates one must use expansion parameters differ-
ent from that usually used in the SMWF approxi-
mation, e = O(p/R), where p, is the gravitational
radius of the sun and R its distance. The devia-
tion from flatness of the metric due to the sun is
measured instead by gr'/R', with r the distance
from the center of Earth.

The construction of this generalized Fermi
metric is carried out in two steps. First, given
a geodesic world-line G in the field due to the
sun only, one builds on it a vierbein, [A&»",
A«& "], i =1, 2, 3, and the corresponding Fermi
normal coordinates (x"). The metric in the local
inertial frame is obtained either by performing
the coordinate transf ormation from Schwarzschild
isotropic coordinates X" to x", or by using its
explicit expression in terms of the Riemann ten-
sor." If we denote the ordinary velocity along G

by V'=dX'/dX', it is necessary to compute g»
up to terms of order pv'/r, 'R', while for the oth-
er components of the metric tensor, the lowest
significant terms suffice. These are the expres-
sions one gets:

g»+1 =—h» =2Up —(p,/R')( r (6p, /R —4V )P2+ V'(r -Sxr2) +9x„x~ VV„—Sr2V„2];

g„=-h„'=-(2p,/R')[x;(x„V„-x„V)+R,(2 „x V V—r')+V, (r' . 2„—') J;

g;, —&„=h,, = -(p/SRS)[6, , (2r'-Sx+2) -2;x,x-SR;R„r' 3.+( xR,. +xR,. ) zxJ.

Here,

(la)

(lb)

(lc)

U~=2 pr'P, /R'= p,(Sx~' —r') /R' {2)

is the ordinary tidal potential, and P, is a Legen-
dre polynomial. Subscripts R and V denote, re-
spectively, the components along the radius vec-
tor R from the sun to Earth, and Earth's velocity
V; r = v'(6, ,x'x') is the Cartesian distance from
G, and R =R/R. Geodetic precession affects the
tidal potential and other terms in Eqs. (la)-(lc)
because the vierbein rotates with respect to the
barycentric frame by about 0.019"/yr. The met-
ric tensor (1) is correct in the limit r/R -0 for
a point Earth; in the term h« the coefficient of
pr'/R' has been evaluated up to terms of order
V'= p/R. This expression, therefore, is consis-
tent only if r/R is no larger than O(g/R); for
larger values of r/R the expansion in r /R must
be taken beyond quadratic terms. It is sufficient
to do so, however, in the tidal potential U~. This
can easily be done in a Newtonian framework and

in the following discussion we shall understand
U~ to be the tidal potential suitably corrected to
the necessary order in r/R.

The second step is application of the coordinate
transformation X"-x" defined above to the full
post-Newtonian metric6' including Earth. The
central line G is taken at the center of Earth.
One needs g,p up to quadratic terms in the mass-
es of Earth and the sun and the other components
up to linear terms; this determines the required
approximation in the functions X'(x ") and X ' (x ").
The calculation is complicated, but it reveals
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goo = -1+hoo + 2U- 2 y,, /r '+ 6h» I

S
ga, =~0;

g, „=6;„+h;, +6, , 2p, jr.

(Sa)

(Sb)

(Sc)

In Eq. (Sa), the ordinary Newtonian potential U

differs from p, /r by the . contributions due to the
multipole terms of Earth's field and the other
bodies in the solar system except the sun itself;
these contributions are not needed in Eq. (Sc) be-
cause in the equations of motion, h, , appears

subtle corrections which arise at this high level
of precision. In particular, second-order effects
appearing to arise from the retardation of gravi-
tational signals are cancelled by time-dilation
and length-contraction effects so that relativistic
perturbations on the acceleration of near-Earth
satellites are reduced to a very small level.

We show here how to arrive at the final ex-
pression for the metric in a direct, albeit less
rigorous, way. As far as h«and h, , are con-
cerned, one can simply add to the solar contribu-
tions (lb) and (lc) those due to Earth; since in
the local frame Earth is at rest, the additional
terms are obtained from the Schwarzschild solu-
tion in isotropie form. The only nonlinear terms
needed are those in g«. Among them, those
coming from the sun only are already given by
(la); those due to Earth are obtained from the
Schwarzschild solution; therefore only the inter-
action term, denoted by %», is needed. There-
fore we set
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only in the correction to the Newtonian acceleration. Shoo is determined by the field equation with two
time indices; when written in terms of h „„=g„„-q„„ to within terms of second order it reads

V I M-I I oo„4+I OO„I,J- ZIOO, CIOO -2hoo„hd 2

The comma means ordinary derivative and the
indices are raised with Kronecker's ~,, ; Latin
indices run from 1 to 3. We need to solve this
equation only as far as the terms proportional to
p. p,, are concerned; they arise from terms on
the right side of (4), of the type Uh„„s. In h„„s
it is sufficient to consider the terms of order
pr '/R'. A straightforward calculation then
gives

V'6h„= ~{p p, /~R'P)*, . (5)

By requiring that ()boo be of O(r) one obtains the
unique solution

10
(6)

It is remarkable that the solution is proportional
to the product of U and the tidal potential U~, as
one could have expected in a naive, nonlinear
theory; the coefficient ~3 is of course peculiar
to general relativity.

We next discuss the invariance properties of
this solution. Just as in the Fermi solution, we
can replace the time x' with an arbitrary com-
bination x'+c and operate on x' with an arbitrary
and constant orthogonal transformation. We have

! also some freedom in the choice of G. Suppose
that the center of Earth is not placed at the ori-
gin, but at a point r„and that its velocity in
this frame is not zero, but dr, /dt = v, with u,
= Vr, /R. Then Earth's potential is not p, /x,
but the time-dependent function p,, /~ r —r, ~.

This brings about a correction in Rpo and in the
higher-order gravity tensor for the earth. The
field equation (4) has now a correction, coming
from A pp pp of order

Ir —x', I' ' x' R'

(in fact the acceleration of Earth is now dv, /dt
~ gr, /R'). This is negligible with respect to the
source term in (5) if r, «r. It can also be shown
that with this condition the full Earth field re-
mains essentially unchanged. Therefore, the
solution (3) is invariant under a group of trans-
formations which has the same structure as
Poincard's group, although the translations and
the boosts must be small in the above sense.

It is straightforward to write the Lagrange
function corresponding to the metric (3). We
confine ourselves to listing the different types
of terms which arise. We have

L = —,
' v' —U —U~

10}

+ ——x ' + —v VH + —[ p. v + u r j2

R R R R3 e ~

(3} {4}

(7)

In order, the terms in the above equation are the classical Lagrangian (0}; the relativistic Schwarzs-
child corrections to the field of Earth, (I}; a correction to the tidal field of the sun which is quadratic
in its mass, (2}; a "magnetic" term linear in the velocity of the test body, arising because in this

TABLE I. Estimates of perturbing accelerations of an Earth satellite due to relativ-
istic corrections. In evaiuating these orders of magnitude it is assumed that z —-p //y.
For LAGEOS, x/(10 cm) =1.2. The magnitudes of the accelerations due to Newtonian
forces of attraction to Earth, and the solar tides, are given for comparison.

Source Magnitude

Newtonian potential
Solar tides
(1) Nonlinear Earth field
(2) Nonlinear solar tides
(3) Solar "magnetic" term
(4) Earth-sun interaction

c p, /~ =4x10 [(10 cm)/rl cm sec
c pr/R =4x 10 [r/(10 cm)] cm sec
c p /y =2x 10 [(10 cm)/y] cm sec
c p r/R =4x 10 [x/(10 cm)] cm sec

c Ip p r/R ] / =8x 10 +4/(10 cm)] cm sec 2

c pp / 8R2x10 cm sec
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frame the sun is in motion, (3); and interaction
between the sun's tidal field and the Newtonian
potential of Earth, (4I (an analogous nonlinear
interaction with the lunar tidal field is to be ex-
pected but is not discussed here). In Table I are
listed the orders of magnitude of the correspond-
ing accelerations.

The independent space and time variables de-
fined by the above construction are the obvious
extension, in general relativity, of Earth-cen-
tered inertial coordinates and Newtonian time.
They provide a convenient and readily interpreta-
ble reference frame for the description of pre-
cision tracking of Earth satellites and for world-
wide clock synchronization. ' '" For such appli-
cations, one important reason why the relativis-
tic corrections of Table I are so small is that the
equations of transformation from barycentric co-
ordinates to local inertial coordinates require
clocks to be synchronized in the local inertial
frame. Such clocks will not be synchronous with
respect to barycentric coordinate time.

We conclude that the main relativistic effects
upon an Earth satellite are those described by
the Schwarzschild field of Earth itself. It is well
known that the only secular perturbation from
Earth's field is an advance of the perigee, bc',
of order p, /r r,adians per orbit plus a similar
change in the mean motion. Since the actual ob-
servable for advance of perigee is not 6~ but ~co

times the eccentricity, for a satellite in an al-
most circular orbit like LAGEOS this effect is
just now becoming observable. The new relativis-
tic effects, corrections to the tidal field of the
sun, are much smaller and have a different de-
pendence upon the distance. They are below the
present level of observability for LAGEOS, but
the first term (No. 2 in the table) may be barely

observable with the laser ranging to the moon.
%e shall discuss in detail these three correc-
tions in a future paper.
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