Fractal Dimension and Self-Similarity of the Devil's Staircase in a Josephson-Junction Simulator

In a recent Letter, Jensen, Bak, and Bohr¹ showed by numerical calculations that the stability intervals for limit cycles of the circle map form a complete devil's staircase at the onset of chaos, and they conjectured that the fractal dimension of the Cantor set derived from the space between mode-locked plateaus should assume a universal value of D=0.87. This fractal dimension may serve as an index for characterizing the scaling behavior of a large class of systems at the critical point.

The system we used to measure this exponent was an electronic Josephson-junction simulator, the same as the one used in previous studies of chaos.² The essential property of this nonlinear system is described by the differential equation

$$\frac{d^2\varphi}{dt^2} + \frac{1}{(\beta_c)^{1/2}}\frac{d\varphi}{dt} + \sin\varphi = A_0 + A_1\sin\omega t, \qquad (1)$$

where $\beta_c = 2eI_c R^2 C/\hbar$ is the McCumber parameter and the terms on the right-hand side of Eq. (1) are dc and ac currents in the circuit expressed in reduced units.² We have measured the widths of mode-locked dc current plateaus corresponding to rational winding numbers $W = f_J / f_d$, where f_J and f_d are the Josephson and driving frequencies, respectively. The stability intervals are determined by observation of mode-locked patterns of $\sin\psi$ vs $\dot{\psi}$ on an oscilloscope and by use of a spectrum analyzer to find the frequency ratio W while the dc current is varied.

For low values of β_c (e.g., $\beta_c = 0.03$, and with W = 0.5495, $A_1 = 1.473$), we were able to observe a large number of subharmonic plateaus in excess of a hundred. This lends strong support to the predicted behavior of *self-similarity* in the mode-locked structure, or a devil's staircase.^{1,3} However, for this range of β_c , which is far from chaos, a plot of $\log N(r)$ vs $\log(1/r)$ yields a slope $D \cong 1$, where N(r) = [1 - S(r)]/r, and S(r) is the total length of subharmonic steps having a width larger than r in the closed interval of dc current variation, indicating that the devil's staircase is far from being complete.

With $\beta_c \approx 0.3$, and $\omega = 1.6-2.9$, $A_1 = 0.6-1.1$, the system is in a state not far from chaos; the $\log N(r) - \log(1/r)$ plot then shows a *fractal dimension* with D < 1. A typical plot is shown in Fig. 1. For several sets of selected parameters near the onset of chaos, the slope determined from this plot is $D = 0.91 \pm 0.04$. Intrinsic noise and stabili-

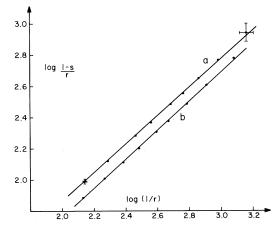


FIG. 1. Plots of $\log[1 - S(r)]/r$ vs $\log[1/r]$, slopes give the fractal dimension *D*. Curve *a*: $\omega = 2.90$, $A_1 = 1.06$, A_0 ranges from $W = \frac{1}{8}$ to $\frac{1}{5}$, D = 0.91, based on 66 subharmonic steps. Curve *b*: $\omega = 1.58$, $A_1 = 0.63$, A_0 ranges from $W = \frac{1}{5}$ to $\frac{1}{3}$, D = 0.93, based on 45 subharmonic steps.

ty problems have prevented us from measuring systematic variations of D near chaos with reliable accuracy. Also, since the system can enter chaos via various routes by changing several different parameters, and the onset of chaos through varying β_c is not sharply defined, it is difficult to assess quantitatively the deviation from the critical point. The value $D = 0.91 \pm 0.04$ thus represents the lowest value of the fractal dimension which has so far been observed with a narrow range of parameter variation near transition to chaos in our system. The change from $D \cong 1$ to 0.91 as the system approaches chaos, and the smooth straight lines shown in Fig. 1, can be viewed as supporting evidence for fractal dimension and self-similarity of the devil's staircase suggested by the numerical calculations of Jensen, Bak, and Bohr.

W. J. Yeh
Da-Ren He
Y. H. Kao
Department of Physics
State University of New York at Stony Brook
Stony Brook, New York 11794

Received 18 November 1983 PACS numbers: 74.50.+r

¹M. Høgh Jensen, Per Bak, and Tomas Bohr, Phys. Rev. Lett. 50, 1637 (1983).

²W. J. Yeh and Y. H. Kao, Phys. Rev. Lett. <u>49</u>, 1888 (1982), and Appl. Phys. Lett. <u>42</u>, 299 (1983).

³M. Høgh Jensen, Tomas Bohr, P. Voltmann Christiansen, and Per Bak, to be published; Per Bak, private communication.