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Theory of Geminate Recombination as a Molecular Process
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A molecular model of field-dependent photogeneration is presented. The model, dif-
fusion on a lattice in a combined Coulomb and external dc field, is solved exactly. The
solution for the quantum efficiency g has a larger range of applicability than the continu-
um theory to which it can be compared in the infinite-sink case. It is shown that g can
vary greatly with small variation of key molecular parameters and that the high-field
limit of'g is controlled by the same molecul. ar properties which determine its field de-

pendencee.

PACS numbers: 72.20.Jv

Geminate recombination of a localized charge-
carrier pair is the primary process responsible
for limiting the efficiency of charge photogener-
ation in a wide class of condensed phases. In sol-
ids it has been studied experimentally in amor-
phous semiconductors, ' molecularly doped poly-
mers, ' and molecular crystals. ' In many mater-
ials the variation of q, the photogeneration quan-
tum efficiency, with E (electric field), can be
successfully fitted by a theory originally pro-
posed by On sager. 4

The parameters used in the fitting are p, and

~„ the initial yield and separation of thermalized
ion pairs, respectively. The main insight one de-
rives from this procedure is that the final rate-
determining step in photogeneration, for separat-
ed pairs, is the overcoming of a field-modulated
Coulomb barrier with the aid of thermal fluctua-
tions. This procedure leaves open a number of
questions: How valid is the continuum model of
carrier diffusion in solids, ' e.g. , those studied
in Befs. 1-3~ Are the parameters p, and v, con-
venient phenomenological parameters or can they
be interpreted literally~ Is the separation of
charge carriers into two groups, those reflect-
ing "1—p,

" events and those associated with
events, field independent~ How are these param-
eters related to clearly identifiable molecular
properties of the system~

In order to deal with these issues, and to ob-
tain a more microscopic understanding of gemi-
nate recombination, we have developed a compre-
hensive molecular theory of this process. The
main feature of this theory is its focus on the
competition between all the intermolecular and
intramolecular transition rates operating in the

system, and the effect on this competition of a
few controllable parameters, e.g. , E, T (tem-
perature), and c (the molecular concentration in

doped systems). The solution we obtain has a
larger range of applicability than the Qn. sager
theory, is more versatile in terms of initial con-
ditions' and the modeling of transient phenomena,
and shows a diversity of behavior of q(E, T, c) de-
pendent on the relative magnitudes of the inter-
molecular and intramolecular rates.

We consider an electron executing a nearest-
neighbor random walk on a lattice under the joint
influence of an applied electric field and a Cou-
lomb field due to a hole fixed at the origin. The
use of a lattice enables us to incorporate all the
important site properties which determine the
transition rates. The sites of the lattice are di-
vided into two types: a set I of sites, for which
the transition rate to leave the site is affected by
both the external field E and the Coulomb field,
and the complementary set, for which the transi-
tion rate is dependent only on E. The site at the
origin has two states, S, (the ground state) and
S, (the lowest excited level). If the electron oc-
cupies S„recombination has occurred and the
walk is at an end. This can only occur through
transitions from S„ from which the electron can
either occupy S, or transfer to a nearest-neigh-
bor site. Associated with these two types of sites
are different sets of probability densities for a
displacement from site 1' to site 1 in an interval
t: $(l —1', t) if 1' gL, $(l —1', 1', t) if 1'CL,
and g»(t) for S, —S, transitions at the origin.

Let R(l, t) be the probability/(unit time) that the
electron has just arrived at site 1 at time t, hav-
ing started at 1, at t =0. The Laplace transform
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(LT) of the equation for R(l, t) can be written'

R(l,u) = Q $(1 —1',u)R(1', u) + QP(1 —)T X u)R(X u) + 5

R, (O,u) =P„(u)R(O,u), (2)

where R, (0,u} is the R function for state S, at the origin, R(O, u) that for S„and L denotes the sites in
L. These equations can be easily generalized to include transitions directly from nearest neighbors to
S,. The formal solution' of Eq. (1) is

R(1) =G(1 —10) —Q q[G(l —X) —5) q -f(1;i)]R(X),
where, for brevity, we have dropped the Laplace
variable. Here G(f,u} is the Green's function for
the perfect lattice, including the external field,
but excluding the Coulomb field, and

f(l;X) =Q, G(1 —I')((I' —A. ;X). (4)

Equation (3) gives a closed set of linear equations
for the function R(X) for sites in the set L:

G(A. -10)=Q g M gg~R(X'), (5)

where Mgg = G(& -X') -f(X;l').
As there are no transitions 0&t of So, one can

easily show that the probability of finding the
electron in S, at t- is

P, (0, ~) =$,2(0)R(0, 0). (6}
The recombination probability is determined di

rectly (no LT inversion) by one R function evalu-
ated at u =0. R (O, u) is one solution of Eq. (5) and
is equal to the ratio of two determinants with ele-
ments Mgg and G(-1,).

It remains to sketch briefly the evaluation of
the Green's function and transition probabilities.
Analytic expressions for some of the lattice
Green's functions have been obtained on a number
of lattices. ' However, there has been little work

=&(~+ I',~)[g,&(~+I',~)+5- R] ' (9)

where &; is the energy of the electron at site i,
W, is proportional to the molecular overlap fac-
tor, Q(A. ,X') =exp( —P[E& -E q]), P =(kT) ~, and
the energy difference is given by

for the fcc lattice we have chosen (as being the
most isotropic) and none for E-dependent Green's
functions. We have discovered' an important sym-
metry relation, which has greatly simplified the
evaluation:

G(m, n, l ) = e ' yE(m, n, l ),
where E(m, n, l ) is invariant under interchange of
the lattice indices, y= eEa/2k-T, a/v 2 is the near-
est-neighbor distance, and E is in the & direction.
With this relation, the E functions for the indices
we needed can be derived from recurrence rela-
tions and straightforward integrals over elliptic
integrals. ' Now using as the transition rate be-
tween sites

W -, = 8', exp[ -P (E, —E )],
we obtain

4(I;&)

Eq -Eq—-—e(rq —rq)E —(1 —5„0)(l—5z o)(e2/e)(rz ' —rz ')+(5z —5„)E,„. (10)
The first term is the energy difference between
sites due to the & field, the second term arises
from the Coulomb field, and the last term is pro-
portional to E„,the energy difference between
the state with S occupied and that with a hole at
the origin and the electron on a nearest-neighbor
site, in the absence of &; & is the dielectric con-
stant.

Equations (9) and (10) define the geminate re-
combination problem in terms of four dimension-
less variables. The factor R is the ratio of the

&0 transition rate to 8'„y is a dimensionless
E field, a, „=E,„/kT, and y=2-e'/«kT is a meas-
ure of the strength of the Coulomb field.

In what follows, we restrict L, the set of sites

! affected by the Coulomb field, to the site at the
origin and its nearest neighbors. This is equiva-
lent to the statement that transitions from sec-
ond-nearest neighbors to more distant sites are
unaffected by the Coulomb field; it can be shown'
to impose the condition y - 5.44. Extension to
longer-range Coulomb interaction is straightfor-
ward but will not change the essential features of
our results.

Figure 1 shows three curves obtained by nu-
merical evaluation of Eq. (6), giving p(y) for dif-
ferent (&,„,y, R) values. [g= 1 —P, (0, ~).] In the
plot shown X and R are essentially fixed, and &,„
is allowed to vary. Two points in particular are
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FIG. 1. g(y) as a function of g „, low-B limit.

evident from Fig. 1. First, the qualitative re-
semblance between results calculated by the lat-
tice approach and experimental results" is quite
striking. Second, we note that it is possible to
obtain order of magnitude vari-atio-n in v~(y) by
varying molecular parameters, with no change in
initial distribution. One can change &,„,with
fixed y, by changing the intrinsic energy levels
of the molecule at the origin or of the anion at a
nearest-neighbor site. This change can be asso-
ciated with the use of different molecules or local
energy fluctuations, i.e., diagonal disorder. Note
that in Fig. 1 the changes in g were caused by va-
riation in the energy difference in steps of &T.
In the Onsager theory this change in q can only
occur by varying of &0. Thus, in this case &,
would be parametrizing a variation in molecular
energy levels. '

The results of Fig. 1 illustrate another strength
of the lattice theory: the ability to treat an ar-
bitrary initial distribution of electrons about the

0.0 0.4 0.8 I.2
y

FIG. 2. g (y), comparison of low- and high-P regimes.

2.0

hole. The results of Fig. 1 are for an initial dis-
tribution in which the electron is on a nearest-
neighbor site of the hole, with angular distribu-
tion weighted by the applied field (Boltzmann
average). This type of distribution has not pre-
viously been considered. The effect of various
initial distributions (including a Frenkel exciton
at the origin) will be considered in more extend-
ed work. '

In Fig. 2 we turn to some results in the high-R
regime. (In the limit of high R the molecule at
the origin tends to an infinite sink. ) This regime
is of interest because, when R is large, we ex-
pect the loss mechanism which limits the high-
field value of g to be sign. ificant. Indeed, it is
clear that, in contrast to the curves of Fig. 1,
those in Fig. 2 with large R are saturating at val-
ues of q (~) & 1.0. Also note this comparison in
the lower part of the figure. These two curves,
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for weak Coulomb interaction, differ only in R
value. In the upper part of Fig. 2 it is demon-
strated that the high-field behavior of g is con-
trolled by the same molecular parameters and
rate processes that determine the field depen-
dence of p, and that it is not necessary to invoke
a phenomenological quantum efficiency pp to un-
derstand the physics of geminate recombination.
The same parameter (R) that shifts q(~) changes
the field dependence!

Details of the model —temperature dependence,
low-field behavior, dependence on molecular pa-
rameters, etc.—as well as a comparison with
the continuum approximation, and systematic
answers to all the questions raised above, will be
explored in forthcoming publications. It is ex-
pected that this approach will provide a useful
laboratory in which these and other factors, such
as site-energy disorder, dimensionality, and
electron-phonon interactions, can be studied to
advantage.
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