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A theoretical study of intercalation predicts stage-changing phase transitions to be con-
tinuous and to proceed via stage-disordered states. Detailed results are presented for
typical donor and acceptor graphite intercalation compounds. Other systems are also
discussed. A scaling rule relating stage disorder to domain size, stage, temperature,
in-plane density, and charge transfer is proposed. A fundamental limit is set on the
period of well staged structures. Experimental implications are discussed.

PACS numbers: 61.60.+m, 64.60.Cn, 64.70.Kb

When a guest species is intercalated into a lay-
ered host material such as graphite, the result-
ing sequence of guest and host layers can be or-
dered' or disordered.'”® The period of the or-
dered structures consists of a layer of the guest
species followed by » layers of host for a stage-»
compound. Stages 1<n s15 are usually reported.
This remarkable case of high-period one-dimen-
sional ordering has attracted a great deal of at-
tention. However, little is known about the asso-
ciated order-disorder phase transitions.® The
phase transitions in which the stage index » of the
intercalation compound changes are also not well
understood, although a number of elegant experi-
ments''? support the view of Daumas and Hérold®
(DH) that the staged structures consist of micro-
scopic domains, each domain being ordered in
the above sense, but in different domains the
guest layers occupy galleries between different
pairs of host layers. Thus the change of stage
can take place by the movement of rafts of guest |
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where v; is the number of “stage-i units” (sand-
wiches consisting of a pair of guest layers sepa-
rated by 7 host layers) in the domain, —€ is the
nearest-neighbor in-plane interaction energy be-
tween intercalants, N, is the number of lattice-
gas sites per intercalant layer, N is the number
of intercalants in an occupied layer, and Z is the
in-plane coordination number. YN, is the energy
required to separate a pair of host layers suffi-
ciently to admit the intercalants if one assumes
rigid host layers'® within a domain. u;N?/N, is
the electrostatic repulsion between a pair of inter-
calate layers separated by ¢ host layers. The in-
teraction between a pair of intercalate layers is
assumed to be screened out by any intervening
intercalate layer.'®’'' The last two terms in the
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atoms from one domain to another. The purpose
of this Letter is to present a theoretical study
which shows how both stage disorder and the
above phase transitions can be understood within
the DH picture. The phase transitions in which
the stage index changes are shown to be continu-
ous and proceed via stage-disordered states. De-
tailed results are presented for typical donor and
acceptor graphite intercalation compounds. A
simple scaling rule governing state disorder is
proposed, and a limit is set on the period of
staged structures. The present calculations ex-
plain much of the available qualitative experimen-
tal data relating to stage disorder and should pro-
vide a focus for more quantitative experimental
work.

Following Safran® and others,*!° the guest
atoms are treated as a lattice gas with attractive
intralayer interactions and repulsive electrostatic
interlayer interactions. Within this model the
free energy of a single domain with state disor-
der can be written approximately as

1)

curly braces are the entropy due to stage disor-
der. .

In (1) the elastic interactions between interca-
late layers in different domains have been omit-
ted. However, if the distribution {u,} is the same
in all domains then there are no long-range elas-
tic strains present, and the main effect of the
elastic interactions'? is to introduce possible cor-
relations between the positions of the intercalate
layers in different domains. This can be account-
ed for by redefining N, to be a function of an ap-
propriate correlation length instead of simply the
domain size. Since reported intercalate island
sizes vary widely, from less than 100 to 10000 A
and more,*”*® and appear to depend on sample
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preparation more than on ambient conditions, N,
will be treated as a given parameter.!*

A further simplification made in (1) is to as-
sume that the in-plane density x =N/N is the
same in every occupied intercalant layer. This
is in fact a mean-field approximation. It is ex-
pected to be accurate if Z€ and Yy are comparable
and «; is smaller, which appears to be true for
most graphite intercalation compounds.’® Under
these conditions, previous calculations have
shown that the in-plane density in any intercalate
layer is not very sensitive to the location of the
neighboring intercalate layers.!° The approxima-
tion becomes exact (i) at low temperatures where
all occupied layers are completely filled, (ii) in
the high-stage limit where «; - 0, and (iii) in the
high-temperature limit.

The equilibrium distribution {V;} and value of
N are those which minimize ¢ subject to the con-
straint that the number of host layers (25:iv,) is
held fixed. To establish whether stage disorder
should be important in real systems, consider
the case of graphite-K. Fitting the form® u;
=V i'“ to the chemical -potential data of Nishitani,
Uno, and Suematsu'® for stages 1-7 yields a =1,

~0.3 eV. Isety=1 eV, which corresponds ap-
proximately to the cleavage energy of graphite
measured by Salzano and Aronson.!® € is more
difficult to estimate but since Z¢ is expected to be
comparable toy,!° I set Ze =1 eV. The results
for 2T =0.03 eV (about room temperature) and N,
=300 (domains with an in-plane dimension of
about 100 A) are shown in Fig. 1(a). The relative
number f; =v,; /2, ;v; of stage-i units present is
plotted for each ¢ against chemical potential .
For large 4, f, =1 (pure stage 1). With decreas-
ing i, f, decreases continuously to 0 in a very
narrow range of i, while f, increases from 0 to
1, whereupon the domain becomes pure stage 2.
In the transition region the domain is a micro-
scopically disordered mixture of stage-1 and
stage-2 units. Similar continuous transitions oc-
cur from stage 2to 3, 3to4, 4to5, 5to 6, and
6 to 7 as K decreases further, but with increas-
ing stage the region of chemical potential in which
the transition (and the stage disorder) occurs be-
comes broader relative to the region occupied by
pure stages. For stages i>7, pure stages no
longer exist and the domain is always a disor-
dered mixture of two or more different staging
units. With increasing domain size the stage
transitions become narrower (but remain continu-
ous) and pure stages occur for higher values of 7,
as in Fig. 1(b) where for N,=2000 pure staging
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FIG. 1. Stage disorder in graphite-K. Fraction f; of
stage-i units vs =y —po. Ko is the lowest y at which
intercalation occurs for infinite domains. 27=0.03 eV.

can be seen up to approximately stage 14. This
dependence on domain size may explain why ex-
perimental results on stage disorder are very
sample dependent. The present results clearly
demonstrate that it is essential to measure the
in-plane dimensions of the intercalant islands in
any systematic experimental study of stage dis-
order.

This calculation assumes that the sample is
homogeneously intercalated, but in graphite dur-
ing a change of stage from stage» ton -1, some
regions of the sample usually have a higher con-
centration of intercalate and become stage n -1
while other regions are still stage n. The pres-
ent theory predicts that these pure-stage regions
should be separated by a band of microscopically
disordered stage-n and -(z — 1) units. This band
should migrate through the sample as more of it
becomes stage n —1. Since the width of the band
of disorder is related to the range of 4 in which
the disordered state is stable, and this range is
very narrow for low stages for even modest do-
main sizes, it is not surprising that Nishitani,
Uno, and Suematsu'® did not detect any such dis-
order during the staging transitions which they
studied through stage 7. But the present predic-
tion that only disordered staging should exist be-
yond a certain stage (stage 7 for 100-A domains
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at room temperature) agrees with the observation
by Hastings et al.® of a disordered mixture of
stage-7 and -8 units in graphite-K which shows
greater order with decreasing T'.

The effect of a smaller charge transfer (V,
=0.60 eV) typical of graphite intercalated with ac-
ceptors is shown in Fig. 2 for N,=300. At kT
=0.03 eV the results are similar to those in Fig.
1, but the transitions are relatively broader,
This may explain why stage disorder is more
often seen in acceptor than donor graphite inter-
calation compounds.!’? However, in any well
founded experimental study comparing stage dis-
order in different compounds, the variation in
domain size from compound to compound and
from sample to sample must be taken into ac-
count.

The disorder increases with T'. At 2T =1 eV
lin Fig. 2(c)] even a pure stage 2 is not found. In
intercalated graphite this temperature is unrealis-
tic, but in Li,TiS, the scale of energies is lower,
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FIG. 2. Stage disorder for acceptorlike charge trans-
fer. Ny =300. Notation as in Fig, 1.

and behavior similar to that shown in Fig. 2(c)
has been reported.®** Li,NbSe,, where well or-
dered stages 1 and 2 but only a disordered stage
3 have been observed,* may be a case intermedi-
ate between Figs. 2(b) and 2(c). At still higher
T [Fig. 2(d)] even an “imperfect” stage 2 is not
present since f, =1, for all u. |

These examples show that increasing the stage
index or temperature or decreasing the domain
size or charge transfer all have qualitatively sim-
ilar effects on the degree of stage disorder. This
is a result of the competition between the entropy
of stage disorder and the energy of repulsion be-
tween intercalate layers. We may obtain a scal-
ing rule which expresses this observation quanti-
tatively by studying the high-stage limit where
the stage index can be treated as a continuous
variable. Then ¢ can be minimized analytically,
yielding f; = f expl—[( -7)/0]2/2}, where

0% =kT /(N x2d?u; /di?);_ T
o kT{"““z/[NoszOa (o +1)]

and x =N/N,. i is the dominant staging unit and o
is a measure of the stage disorder. This expres-
sion for ¢ provides an accurate scaling rule for
the degree of stage disorder even in the low-
stage case if we veintevpret o to be a measure of
the velative prominence on a chemical potential
scale (as in Figs. 1 and 2) of the disordeved and
pure-stage regions at stage 7. Comparison of
this analytic expression for o with the present nu-
merical results reveals that the special case ¢
=0.29 is particularly important. Putting this val-
ue of ¢ into 7 =[a(a +1)0?N,x2V /T V("2 yields
¢=8, 15, 4.7, 3.1, 1.2, and 0.14 for the cases of
Figs. 1(a), 1(b), 2(a), 2(b), 2(c), and 2(d), respec-
tively, predicting very accurately the stage at
which pure staging ceases to be possible. A val-
ue of <1 should be interpreted as 1 since a pure
stage 1 can always be produced by choosing a
high enough value of 4. Experimental verifica-
tion of the predicted scaling behavior would be of
considerable interest.
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