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an Antiferromagnetic Planar (XY) Model in Two Dimensions
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I andau-Ginzburg-Wilson symmetry analyses and Monte Carlo calculations for the clas-
sical antiferromagnetic planar' Q model on a triangular lattice reveal a wealth of inter-
esting critical phenomena. From this simple model arise a zero-field transition to a
state of long-range order, a new mechanism for spin disordering, and a critical point
associated with a possible new universality class.
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Tmo-dimensional. spin systems cannot exhibit
l.ong-range order by breaking a continuous sym-
metry at finite temperature. ' Although order-
disorder transitions are thereby excluded, Kos-
terlitz and Thouless (KT)' showed that the classi-
cal iwo-dimensional. ferromagnetic planar (XY')
model exhibits a unique phase transition from an
algebraical. ly ordered phase to a disordered phase
via the unbinding of vortex pairs. Whereas the
antiferromagnetic planar model. on a bipartite
(e.g. , square) lattice is equivalent to the ferro-
magnetic model. , the antiferromagnetic case for
a tripartite (e.g. , triangular) l.attics is fundamen-
tal. l.y different because of the inherent frustratiori. '
In this work, me use Landau-Ginzburg-Wilson
(LGW) symmetry analyses and Monte Carlo (MC)
calculations to study the phases of the antiferro-
magnetic pl. anar (AFP) model, X = Jg &, ,&(s,.

" ,"s
+ s,.'s,.'), on a triangul. ar and a square lattice and

find dramatic differences in their critical behav-
ior and underl. ying physics.

An essential. feature distinguishing the triangu-
lar and bipartite AFP models is the existence of
discrete as mell as continuous degeneracy in the
triangular AFP ground state. For a bipartite
lattice, a ground state consists of spins on two
sublattices aligned in opposite directions. For
the triangular l.attice, a ground state consists of
spins on three sublattiees forming + 120' angles
leading to a W3&& v 3 periodicity. In a bipartite
lattice global spin rotation generates all possibl. e
ground states, while an extra l.attice reflection
is needed for the triangular lattice. In Fig. 1,
me show two ground states of the triangul. ar lat-
tice which are not obtainable from each other by
global spin rotation. This additional. symmetry
breaking is manifested by the opposite hei. icity

ordering of the tmo ground states. As a conse-
quence, the system supports solitons (domain
walls) as additional elementary excitations. An

example of a soliton is shown in Fig. 1.
The order parameter associated with the &3

&& W3 periodicity is given by I pl, where the com-
plex vector g is defined as

-=—g exp(-iq B,.)s,

Here q=(+~m, 0) and (~~, (~ are orthogonal com-
ponents of ( chosen parallel and perpendicular
to the magnetic field when H o 0. In terms of g,
the staggered helicity' is given by rt =Be(g)x 1m(()
=

I pl' sing. Since lattice ref l.ection is a discrete
symmetry, the system can have long-range heli-
city order without violating the Mermin-Wagner
theorem. ' The zero-field low-temperature phase
is therefore characterized by ( g) = 0 and (rl) =+1
so that although both Be(() and Im(p) have no long-
range order, they are locked in phase (y).

FIG. I. Two ground states of opposite staggered
helicity separated by a domain wall. The helicity of
each triangle is indicated.
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g m,. =H/3Z.
)=1

(2)

Surprisingly, even though the Hamiltonian has no
continuous symmetry, there exist continuously
degenerate solutions to (2). Moreover, it can be
shown that at zero temperature as P is increased
above H, =3J, the solutions to (2) change from
two disconnected manifolds (corresponding to two
hei. icity states) to one manifold (corresponding to
a state of zero helicity). Above II, = 9J all the
spins are aligned, l.eading to the paramagnetic
phase.

The entire II- T phase diagrams for both square
and triangul. ar AFP models determined by MC
calculations are shown in Fig. 2. (The simula-
tions are performed with use of standard tech-
niques' for L &L lattices with periodic boundary
conditions, with L up to 72. Data were obtained
with use of between 2000 and 6000 MC steps for
l.ocating phase boundaries and as many as 4&&104

MC steps for studying critical behavior. ) The
phase diagram for the square lattice (top panel)
is easily understood. At II =0, there is a conven-
tional KT transition at T„=[0.90(2)]A At H & 0,
only two degenerate ground states remain, lead-
ing to an Ising order-disorder phase boundary.
For the triangular lattice (bottom panel) the phase
diagram is far richer including four phase bound-
aries and three mul. ticritical points T„P» and
A. The zero-field critical temperature T,

As the temperature increases, two spin-dis-
ordering mechanisms compete: the unbinding of
the vortex pairs in both Re(ICI) and Im(() and the
unlocking of the phase correlation between Re(ICI)

and Im(ICI). The latter process takes place through
the creation of sol. itons and the transition occurs
when the surface free energy associated with the
soliton vanishes. Using simple stability argu-
ments" we find that the pair unbinding tempera-
ture T„ is roughly twice the temperature T, asso-
ciated with a soliton transition. This suggests
that helicity order will be lost first, with a spon-
taneous generation of solitons. As verified by
MC results shown below, the solitons screen the
vortex interaction and induce pair unbinding im-
mediately. This mechanism for spin disordering
is fundamentally different from vortex pair un-
binding and leads to what seems to be a new uni-
versality class of critical phenomena.

In the presence of an in-plane magnetic field
the ground states still preserve the &3 &v3 peri-
odicity. The sublattice ground-state magnetiza-
tions m„m» m, satisfy l m,. l = 1 for all i and
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FIG. 2. Phase diagrams for AFP models on the
square (top) and triangular (bottom) lattices. Com-
ponents of the order parameters which are zero are
indicated explicitly. The circle diagrams illustrate the
spin configurations in the ordered phases. The dots
around the circles represent the number of additional
distinct and degenerate spin configurations obtained
by permuting the sublattices. The manner in which the
three phase boundaries merge at & is not determined
precisely in this work.

+(III ) +2(III ) +aRe(Ill )+

K(ICI, ) = K,'((, )+a'Re(ICI, ')+. . .,

&((II, 0, ) = &Re(ICI „$,')+ cRe[(g, ICI, *)']

+ dim[((„g~*)']+.. . .

(3)

Here , and +,' define isotropie two-component

=[0.495(5)]Z is associated with spontaneous gen-
eration of sol.itons as described earlier.

Since MC results indicate that all the phase
boundaries shown in Fig. 2 are continuous transi-
tions, LQW symmetry anal. yses were performed
to understand their nature. All. the invariants of
the LGW Hamiltonian (to infinite order) can be
built up from twelve elements. The first few
terms in this expansion are

+LGW +(Ill ) + +(4x) +I ((Ily 4z) y

where

434



VOLUME 52, NUMBER 6 PHYSICAL REVIEW LETTERS 6 FEBRUARY 1984

Hamiltonians of the form

& (0'(() = &
l 0'(( I + & 14() I

+ & 14'p I + ~ ~ ~ ~ (4)

In (3), &(g~~) and &(g~) describe three-state Potts'
and Z(6)' models, respectively. This may be un-

derstood physically by noting that when the re-
striction Is&1 = I is neglected, at H& 0 the parallel
or perpendicular components correspond to an an-
tif erromagnetic triangular Ising model with or
without an external field, respectively. Given

(3), as the temperature decreases, the system
can order via two alternative processes: (a) (~~

orders first, after which P& can then order at a
lower temperature. (b) P& orders first and im-
mediately orders g ~~ by inducing an external field
through the cubic term in V(g~~, (J). The univer-
sality classes of these transitions are analyzed
as follows. For case (a), when g~~ becomes crit-
ical first, the transition belongs to the three-
state Potts universality class. In. the ordered
phase two sublattices have spins pointing parallel
to the field, while the other sublattice has spins
pointing antiparallel to the field. The three Potts
states correspond to the three alternative choices
of the sublattiee with antiparallel spins. The re-
sulting LGW Hamiltonian for y~

—= v+iT is then

= ao'+ bT'+ c(x + dT'+ eo'T'+. .. .
This Hamiltonian has the same symmetry as the
Ashkin- Teller' and asymmetric eight-vertex"
models. For case (b), in which g~ orders first,
considering only &(P~) would indicate that the
transition is of the Z(6) universality class' and

may have an intermediate algebraic phase. How-

ever, since induced P ~| ordering may break the
Z(6) symmetry, the situation is more complicated

and is currently under investigation.
The choice between cases (a) and (b) has been

determined from MC calculations. In Fig. 3, we
show the order parameters I& (~~)l and I& y.)l at
T =0.4J as functions of magnetic field. Two or-
dered phases with 1(y „&I g0 and I&((ti&I so are
separated by an intermediate phase with 1(y~~) I c 0
but 1(g~)1=0. In Fig. 2, the intermediate phase
corresponds to the region bounded by H„A, T„
with the fully ordered phases corresponding to
the regions above and below. These results indi-
cate that along the phase boundary A-T„g„or-
ders while j ~ does not, thus realizing case (a).
The three-state Potts phase inside the boundary
is illustrated by the circle diagram representing
the three possible spin configurations. Case (b)
is realized along the phase boundary A-B„giving
rise to the six spin configurations depicted by the
circle diagram.

The remaining two inner phase boundaries of
the triangular lattice in Fig. 2 correspond to the
ordering of v and 7' Fro.m Eq. (4) either a, 7,
or both o and T may order across these bound-
aries. MC calculations (not shown) indicate that
0 orders at the upper boundary H, -A while r or-
ders at the lower boundary H, - T, . The distinc-
tion between the upper and lower fully ordered
phases is that the lower phase has nonzero helic-
ity. The six possible states in the lower region
are shown by the circle diagrams with positive
and negative helicity.

Finally, the critical behavior at H =0 and T = T,
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FIG. 3. Parallel and perpendicular components of the

order parameter as a function of magnetic field.
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FIG. 4. Critical behavior at II=0 and 7'=7' for J
=1. (a) Staggered helicity, (b) fluctuations in staggered
helicity, (c) fluctuations in order parameter P, (d)
maximum specific heat, and (e) spin-helicity modulus.
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has been studied in detail by MC with the results
shown in Fig. 4. Considering finite-size effects
and restricting ourselves to our best estimate of
T„we find that the staggered helicity and its
fluctuation have Ising-like critical exponents 0
=0.123(3) (-', ) and y =1.73(5) (7), respectively.
In contrast, the fluctuation of the staggered mag-
netization (~ P~) is consistent with the KT form
exp(ctT —T, ] "'j'. The specific heat is dominat-
ed by the leading singularity, and seems to have
Ising behavior as shown in Fig. 4(d). The spin-
helicity modulus' I, unlike that of the KT transi-
tion, seems to display a jump greater than the
universal value of (2/&) T, . These results, taken
together, suggest that the transition at T, may
constitute a new universality class.

In summary, the essential physical results of
this work are the following. An exceedingly sim-
ple model leads to a surprising richness of phas-
es and critical behavior. The underlying trian-
gular lattice and the associated degeneracy play
a crucial role in this physics. A mechanism for
long-range order has been demonstrated which
does not violate the Mermin-Wagn. er theorem
and a soliton has been introduced and shown to
induce the H =0 phase transition.
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