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Solution of the Multichannel Kondo Problem
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The multichannel Kondo model is exactly diagonalized for any impurity spin and for an
arbitrary number of orbital channels. The impurity free energy is found and its proper-
ties deduced for high and low temperatures. When the number of channels is sufficiently
large a nontrivial fixed point appears. Its critical exponents are calculated.

PACS numbers: 75.2Q.Hr

The multichannel. Kondo model

II =-~ Z fdxC. ..*(x)s.(., (x)+2~ Z 4., *(0)~. 0., (0)S
a, b,m

arises in the study of magnetic impurities in a
metal when the orbital structure of the impurity
atom is taken into account. ' The particular form
(1) applies when the crystal electric fields are
larger than the spin-orbit coupling and split off
an isotropic orbital singlet' (transition-metal
impurities with half-filled levels).

The field (. describes electrons with spin in-
dex a = + 2 and "flavor" index m = 1, .. .,f (which
l, abele the orbital channel. s), interacting, via
spin exchange, with a "flavorless" spin-S impur-
ity located at x =0, The infrared properties of the
model, we shall. find, depend crucially on the
values of f and S. The original argument is due
to Nozihres and Bl.andin. ' While the weak-coup-
ling fixed point (8 = 0) is always unstable, the na-
ture of the strong-coupling trivial. fixed point
(J=~) depends on the strength of the fl.avor in-
teraction. For f ~ 2S it is attractive and the ef-
fective coupling constant flows smoothly from
weak to strong coupling, leading to a system char-
acterized by an effective spin S' = S —,f at T = 0. —

In particular, if S = ,f the impurit—y spin is totally
screened and one has a complete Kondo effect.
A new behavior occurs if f & 2S. In this case the
impurity-induced flavor interaction is suff iciently
strong to destabilize the strong-coupling fixed
point. As a result a nontrivial infrared fixed
point appears, which controls the low-tempera-
ture properties of the model. ' The low-temper-
ature regime is therefore expected to exhibit
scaling behavior characterized by nontrivial crit-
ica1. exponents. We shall be able to determine
these exponents in what follows.

To do so we shall diagonalize the Hamil. tonian
and derive an expression for the impurity free
energy. The main difficulty is to identify and in-
corporate the effect of the flavor degrees of free-
dom. The first quantized form of the Hamiltonian

fbi'

h = Q [-is, -A '(&,)'+2'(x. )o. ~ S] (2)

and flavor seems to have disappeared. This, of
course, is not the case since it will make its ap-
pearance through the Pauli principle satisfied by
the electron fields.

To see how it comes about consider a stream
of electrons carrying spin and flavor degrees of
freedom, all. moving with the same velocity, o~
=1, and impinging on the impurity. Since the im-
purity is "flavor blind, " as long as the electrons
pass the impurity one at a time, the flavor will.
play no role. It enters by allowing more than one
electron to be at the impurity site and interact
with it. Since all electrons move with the same
speed, this means that flavor all.ows composites

g(~ )a~. ..an, m~. ~ .mn

= g, , *(x)(„„,*(x) ~ ~ ~ (, (x), n ~f,
to form and interact with the impurity. The ap-
propriate composite wil. l be determined by the dy-
namics.

To observe the formation of these dynamic com-
posites one must adopt a cutoff scheme that is
sufficiently general. ' Consider adding to the
Hamiltonian higher-derivative terms, (1/A)" '
&& g, *(&„) g, . These would provide a "built in"
cutoff for the model. ' To preserve factorizability
one also must add local counter terms which are,
however, irrelevant in the continuum limit, A -~,
and will. not be specified here.

We choose the second-order regulator and study
the Hamiltonian
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by means of Bethe-sensate techniques. The eigenfunctions are given as combinations of plane waves
with pseudomenta jk, , j=1, .. . , fN) and spin-flavor-dependent coefficients. These are determined
from the two-body S matrices derived from h,

-1 .i l
lg

j

-1
J', fN+1 fN+1, j

-iJI'. 'P Z -X —gJI """
.jl l .jl

—jJ —Xl —jJj
~,. +l-iz(o, . s+-', )

X,. + 1 —i Z(S + 2)

j, l fN;

The quantities X, are Riven by x,. = k, /A in our cutoff scheme. The spectrum is found by solving the
periodic boundary conditions and is given by

E = Q k,.(1+k,./A),

where the momenta (all distinct by Fermi statistics) are derived from'
M1

exp(ik, .I, ) =
p=l

(u,&» —X,. +i J/2 "
XY

—X, +i J/2
~ii —X . —iJ/2

y i lay
—X~ —1Z/2

g=r~1 8=1 ~y'

+1 —i JS, , y —X,. —i J/2 8, X'Y —Xs —i J
The ground state of the system is a fl.avor singlet described, in the l.imit L —~, by the string solu-

tion'

(m '"', y =1,2, .. .,M„)=(PA/A+i J[(f-r+1)/2 —g]; q=1, 2, . . .,f —r, A. =1,.. ., N),

r=0, 1, . . .,f-l,
One can see that other states with uniform distributions of strings of shorter length have excitation en-
ergies of order J'A ~ It follows that the spin interaction between the impurity and the electrons (but
not the full. Hilbert space of the electrons themselves) is effectively described, in the limit A-~, by
the "fused" equations

X, +1+ i~S X, +if~/2" "
X, -XB+i~

x, +1-i~S x, if~/2 -s=, x, -xs i~ '- (4)

where N -AL.
Corresponding to the "fusion" occurring in the equations, the flavor strings fuse the associated field

operators into higher spin composites, as follows from the form of the wave function in the presence
of stringlike pseudomomenta. It is'

F =exp( —,'AZ g- ix, —x, i+ip(x, + ~ . .+x,)) &&[. . .].
As A -, a local. composite is formed. The role of flavor now becomes clear, since in its absence the
f string are not al. lowed and the system relaxes into a different Hilbert space.

Fused equations similar to (4) occur, for example, in the study of higher-spin magnetic chains.
There, however, the higher-spin operators occur in the initial Hamiltonian and a rather artificial. in-
teraction is required to ensure integrability. In our case we find that the flavor interaction is so strong
that it drives the operators to form higher-spin composites, dynamically.

%e now proceed to the calcul. ation of the impurity free energy by means of the standard methods
based on the "string picture. "' The result, for temperature I' and magnetic field II, is

F&z»' ~ = (1/2m) f dg sech(f+ lnT/T, ) in[1+ q, ~'~'(g)], (5)

where the function q»'~' is a member of s, set (q„'~', n = 0, 1. . .,~) satisfying a system of coupled inte-

365



VOLUME 52, NUMBER 5 PHYSICAL REVIEW LETTERS 50 JANUARY 1984

gral equations'

in7i„+'= —25„&e~+Gin(l+p„+, ' ')+ G In(1+ p„,' '),

with g,o" =- 0 and

[n+I] in(1+q„'~') —[n] 1n(1+q„„' ')-2H/T, n-~.

(6)

Here G and [2n] are the usual. integral operators given by the kernels [2w cosh'] ' and n[w'n'+&'] ',
respectively. " In Eqs. (5) and (6) we have taken the scaling limit N/I- -~, J- 0 while holding T, = (N/
L) exp(- m/J ) fixed. The variabl. e f is related to X by my/J =f+ InTI./N.

The solution of the equations is unique and is given by functions q„~'(f) which are monotonically de-
creasing in f for all n and tending to finite limits q„,'~' as f -+~. The limits are given by

q„'~' = sinh'[(n + 1)H/T) sinh '(H/T) ', n = 0, 1,2, .. .,

q„,'f'=sin'[(n+1)w/(f +2)] sin [m(f +2)] —1,
for n& f, while for n ~f

q„+0' = sinh'[(n+ 1 —f )H/T] sinh '(H/T ) —l.

(aa)

(sb)

Consider now the high-temperature properties of the model. They are determined, for a spin-S
impurity, by the properties of q»'~' in the limit l ——~. Just as in the one-flavor case" this limit is
approached with power corrections, leading to

(;~p) sinh(2S+ 1)H/T B,

This is the weak-coupling regime, governed by the trivial. fixed point at J =0. The free energy is
that of an isolated spin S up to logarithmic corrections characteristic of asymptotic freedom. The na-
ture of this point is unaffected by the presence of the flavor degrees of freedom.

On the other hand, flavor affects significantly the low-temperature properties of the model. These
are determined by the behavior of q, s'~' in the limit f -+~. As can be read off from Eqs. (6), the na-
ture of the limit and of the approach to it now depends on the flavor degrees of freedom.

In the case f & 2S, the l.imit q, p' is again obtained with power corrections and we have

sinh(2S+ 1 f)H/T -C,
sinhH/T ln T/T,

This is the free energy of a spin S'=S - ,f. In-
other words, the impurity spin is partially
screened. The approach to the limiting value is
logarithmic indicating a trivial fixed point at 4
= ~

~ When f =2S the screening is complete, and,
as T -0 F™-T '(D, T2+SH2) A„B,, C„
and D, are numerical constants.

A new asymptotic infrared behavior arises for
f & 2S. We begin to analyze it by considering the
zero-temperature magnetization for small mag-
netic f iel.ds. In the zero-temperature limit the
thermodynamic equations coll.apse into a single
equation which describes the maximum spin ex-
citations above the ground state, which consists
of an f -string y configuration. For small. mag-
netic field II the impurity magnetization is given
by

M'~~(H- 0) = (p/2) f '.dx 0,' ~(x),

M' P(H)- const && p(H/T)' H —0

leading to the critical. exponent 6 = f/2.

(10)

where v, 'mt' is the impurity contribution to the
ground-state density of f strings. Its Fourier
transform 8,' ~(p) is

sinh(SJP)[2cosh(JP/2) sinh(f JP/2)] ', f ~2S

and

exp[(f/2-S) J~ p~][2 cosh(JP/2)] ', f ~ 2S.
In the limit H- 0, the magnetization is dominat-
ed by the properties of o'' ~(p) at p =0. While
for f & 2S, o'0'~&(p) is discontinuous at p =0 lead-
ing to M&„0&' &=2@(S—2f)+O(lnH/To), for f ~ 2S
the transform is analytic in p so that M' "(H)
is controlled by the pole at P = —2i/f (p = —i if
f= 2S = 1). Hence
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Consider now the equations of finite tempera-
ture. The functions g„'~) approach their limit
values exponentially, q„'~'(g)-g„+'~'+c„e '~,
f-~, n&f, with 0&v& 1. The coefficient 7 is
givenby v=1 for f=1 and

tive-definite eigenvalue problem for 5„=c„(1
+ q„,~) ',

(2+1/q„,f)f „-f „„-f„,=1f„,
n=1, 2, . . .,f-l

(12)

v = (2/w) arcsin[(Xo/4)'~2], f & 2,

where X, is the smallest eigenvalue of the posi-

with the boundary conditions b, =bz =0.
We can now deduce the low-temperature expres-

sion for the impurity free energy,

resulting in a specific heat characterized by a
critical exponent e = -~.

A similar calculation determines the exponent
of the magnetic susceptibility y." It is found to
be y =1 —v.

The coefficient ~ =7 (f ) depends only on the fla-
vor and is given by v(3) = » v(4) = ~» r(5)
=0.62451512, &(6)=-', , .. . . fn the l.imit f-~,
7 - (1+/5)/2f, since Eq. (12) is a discrete ap-
proximation to a Sturm-Liouvil. le problem with
the integrable potential. (sinx) '.

This caicul. ation leads to a complete character-
ization of the critical. properties of the nontrivial
inf rared fixed point.
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Note added. =We received a recent preprint"
addressing the model from a different point of
view. The degenerate Anderson model is studied
in the limit U»E, —U(f-1)/2»fI', which pro-
duces the model for the case f= 2S. The T = 0
magnetization equation is obtained and compared
to the equation of another effective higher-spin
fermion model and thus solved. The results are
then assumed to hold for arbitrary f and S at
T=O.
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