
VOI.UME 52, NUMBER 5 PHYSICAL REVIEW LETTERS 30 JANUARY 1984

Photon Statistics of a Dye Laser Far Below Threshold
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The relative mean square fluctuations, ((&I) )/(I)2 of the intensity I of a single-mode
dye laser have been measured by a photon counting technique, in the region from about
threshold to intensities 1000 times below threshold. 'The results show a steady increase
of ((AI)2)/(I) 2 from less than 1 to about 150 as (I) is reduced, followed by a rapid drop
to zero. This behavior appears to be described fairly well by an equation of motion con-
taining both additive spontaneous emission fluctuations and multiplicative pumping fluc-
tuations.

PACS numbers: 42.50.+q, 42.55.Mv

The dye laser has proved to be not only a valu-
able tool for experimental work because of its
tunability, but also a laser that is unusually in-
teresting in its own right. Recent experimental
work' ' and its subsequent theoretical analysis' '
suggest that the pump parameter a in the usual
Lamb equation of motion" for the laser field has
to be treated as a random function a(t). As a(t)
multiplies the field amplitude E(t) in the equation
of motion, this implies that we have a multipli-
cative type of noise. The quantum or spontaneous-
emission noise, on the other hand, which is usu-
ally treated as additive, has sometimes been
left out of the equation, because its magnitude is
so much smaller.

We have recently obtained strong indications
that the additive quantum noise nevertheless plays
an essential role in a two-mode dye laser well
above threshold, ' because it is responsible for
the observed mode switching, which is suppressed
in its absence. We now wish to present some new~

experimental results on a single-mode laser
operating below threshold, which also demon-
strate the importance of spontaneous emission
noise.

Figure 1 shows an outline of the apparatus.
The active laser medium is rhodamine 6G, which
is made to flow at high speed through a cell, and
is optically pumped by the light of an argon ion
laser. Three etalons ensure single-mode opera-
tion at a wavelength of about 6000 A. The light
emerging from the output mirror is attenuated
and then falls on a beam splitter, where it is
split into two beams that are directed to two
counting photomultiplier tubes. After amplifica-
tion and pulse shaping, the photoelectric pulses
from the two detectors are coUnted, and also fed
to the two inputs of a coincidence counter, that
registers the coincident arrival of pulses within
its resolving time T&. When corrections for
background are included, the rate of counting
+ of the coincidence counter is given by

@= R~R2 T~ 1+—1
~A

dTA(T) + + +
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Here R» R, are the average counting rates of the
two detectors attributable to the laser, &„&2are
background rates, and

is the normalized autocorrelation function of the
fluctuations of the light intensity I(t). When Ta
is much shorter than the natural intensity cor-
relation time T, , then &(v) can be replaced by
&(0) to a good approximation under the integral,
and Eq. (1) reduces to

&=R R T 1+8.(0)+ '+ 2+R R, R2 R~R2

&(0) is also the normalized second factorial mo-
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FIG. 1. Outline of the apparatus.
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! ment (n(n —1))/(n) —1 of the number of photon2

counts n in a short time interval. It is clear
from this equation that measurements of Q allow
A. (0) to be determined. In practice the value of
T~ is governed by the discriminator pulse length,
which was of order 18 nsec. At least in the thresh-
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FIG. 2. Measured values of the relative fluctuations
A(0) = ((AI) ) /(I), superimposed on the theoretical
solution obtained from Eq. (4), with Q =300, I =5. The
intensity scale is in arbitrary units. The broken curve
is proportional to 1/(I) .
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old region and above, &R is generally much less
than typical intensity correlation times, that us-
ually range from microseconds to milliseconds.

Figure 2 shows the experimental results of a
determination of the relative mean square inten-
sity fluctuation A. (0) = ((&I)')/(I)' from Etl. (3),
as a function of the mean light intensity (I). The
standard deviations of &(0) either are indicated
or are smaller than the dot size. As the work-
ing point of the laser is lowered below threshold,
A(0) rises from small values to a maximum of
about 150, and it then drops rather rapidly close
to zero. The value A. (0) = 0.5"t represents the
threshold for a conventional laser, so that we
may characterize our measurements as being
concentrated in the region well below threshold.
However, as has long been known, the dye laser
is very poorly described by conventional laser
theory, ' ' according to which &(0) should never
rise above unity.

It was suggested a few years ago' that the de-
partures of the behavior from conventional laser
theory may be attributable to pumping fluctua-
tions, and the treatment of the laser pump param-
eter as a random variable does indeed lead to
the prediction that A. (0) should rise with decreas-
ing (I) below threshold. More recently this idea
has been developed into a dynamical theory by
Graham, Schenzle, and their co-workers. ' '*'
They took the dimensionless equation of motion
for the complex laser field E(t) to be of the gen-

eral form

i (t) = [a, + a, (t) —[Z(t) I']Z(t) + q(t), (4)

except that the additive noise term q(t) represent-
ing the quantum fluctuations was left out. Here
a, is the average pump parameter and a, (t) is a
Gaussian random function representing the pump-
ing fluctuations about the mean. Originally a., (t)
was taken to be ~-correlated. The model was im-
proved by Dixit and Sahni, ' who took a, (t) to be
an Ornstein-Uhlenbeck process with

(a, *(t)a(t+7)) = Q&e "~'~ (5)

and solved the equation of motion numerically.
Schenzle and Graham later adopted the same
model without spontaneous emission fluctuations
as representative of a dye laser above threshold,
and they succeeded in obtaining analytic solutions
of the associated Fokker-I'lanck equation. ' This
led to the prediction that +(0) should be propor-
tional to the inverse light intensity l/(I), which
is close to what is observed except at the lowest
intensities (see Fig. 2), and it also led to reason-
ably good agreement with experiment for the form
of &(~). "' The model does not predict the ob-
served peak in &(0), but this occurs far below
threshold, well outside the domain of validity of
the theory.

The large increase in &(0) as the working point
of the laser is reduced below threshold is clearly
attributable to pumping fluctuations. Indeed in
the region near the peak, the laser is off almost
all the time, and turns on spontaneously only for
brief periods. However, in order to make A. (0)
come down again at sufficiently low intensities, it
is necessary to include the spontaneous-emission
fluctuations, represented by II(() in Eq. (4), as
well.

We have used a Monte Carlo procedure to solve
Eq. (4) iteratively, with II(t) in the form of a com-
plex &-correlated Gaussian noise, scaled so that

(V*(t)e(t+T)) = 4()(T).

The results of the calculation with Q = 300 and
I'= 5 are also shown in Fig. 2, superimposed on
the experimental data. Although these values of

Q, & were chosen because they produced reason-
able agreement with experiment, no systematic
attempt was made to find the combination leading
to the best fit. Also, the Monte Carlo procedure
converges very slowly in the very low intensity
region (at least for A. (0) & l), and the accuracy of
the theoretical curve is worst where it rises most
rapidly from unity.
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It will be seen that the general trend of the ob-
served behavior appears to be quite well de-
scribed by Eq. (4), except that experimentally
A. (0)-0 as (I)- 0, whereas theoretically A(0)- 1,
which represents the thermal limit. The differ-
ence may be connected with the fact that the line-
width can become so great far below threshold
that Eq. (l) can no longer be approximated by Eq.
(3), and the radiation field may behave as if it
were effectively a multimode field. Although a
peak in X(0) is also predicted by dye-laser theo-
ries that include the effects of crossover transi-
tions between triplet states, "'"our results sug-
gest that Eq. (4) is an adequate representation of
the dye-laser field near threshold and below.
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