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Atomic and Molecular Negative Ions
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An upper bound is given for the maximum number, N, of negative particles (fermions
or bosons or a mixture of both) of charge -e that can be bound to an atomic nucleus of
charge + zg. If z is integral then N, -2z. In particular, this is the first proof that H
is not stable. For a molecule, N, —2Z+K —1, where E is the number of atoms in the
molecule and Z is the total nuclear charge.

PACS numbers: 03.65.Ge, 31.10.+z

One of the striking, nonperiodic facts about the
periodic table is that the maximum number of
electrons, N„ that can be bound to a nucleus of
charge z is never more than z+1. Recently, sev-
eral authors' ' have attempted to find bounds on
N„one of the strongest results so far' (for fer-
mions) is that lim, „N, /z= 1. For bosons, ' how-
ever, N, & 1.2z for large z. Thus, the value of
N, is very dependent on the statistics of the bound
particles.

The purpose of this note is to announce a theo-
rem about K„ the full details of which will appear
elsewhere. ' The theorem applies to any mixture
of bound particles„with possibly different statis-
tics, masses, and charges (as long as they are
all negative), and even with possibly different
magnetic fields acting on the, various particles.
(Naturally, symmetry requires that pa, rticles of
the same type have the same mass, etc. ) The
theorem also applies to a molecule. The usual
approximation that the nuclei be fixed (or infinite-
ly massive) is important, but if they are not fixed
a weaker theorem holds. The same theorems
hold in the Hartree-Fock (restricted or unre-
stricted) and Hartree approximations to the
ground-state energy. '

Suppose that we have a molecule with E nuclei
of charges z „.. .,z» &0 (units are used in which
the electron charge is unity) located at fixed, dis-

tinct positions R„.. ., R~. The electric potential
of these nuclei is

V(x) = gz,.(x- R,.(-'.

Let there be N negative particles with masses
m„. . ., m& and charges -q„.. ., -q„& 0 (in the
usual case each q, = 1) and let each be subject to
(possibly different) magnetic fields A, (x), .. .,
X„(x). (The generality of allowing nonintegral
nuclear and negative particle charges may have
some physical relevance because, as pointed out
to me by W. Thirring, particles in solids such
as semiconductors may have nonintegral effective
charges due to dielectric effects. ) The Hamilto-
nian is

H =5 (T, —q, V(x,)).
+ P q, q, ~x, -x,.

~

'.
1&i&q+S

Here, T, is the kinetic energy operator for the
jth particle a.nd it is one of the following (possi-
bly different for different j) two types (nonrela-
tivistic or relativistic):

T„=[p, —q, A„(x)/c]'/2m, ,

T, =(g, c -q, A,(x)j'+m, 'c'}'~' —m„c'.
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I et q denote the maximum of the q, , let Q =Q,",q,.

be the total negative charge, and let Z =Q, -,z,
be the total nuclear charge. Let E~ denote the
ground-state energy of H„[=—inf spec(H~) ].

Theo~em 1.—If the above system is bound
(meaning that E„ is an eigenvalue of H„) then,

necessarily,

course at least in the atomic case with fixed
nucleus and with T, =p, '/2m, (all j). The proof
{ignoring some technical fine points) in this atom-
ic case is the following: Take 5'/2m = 1 and R
=0. Pick some j and write II~=H„j+h,-, where
II„,. is the Hamiltonian for the remaining N- 1
particles and

Q & 2Z +qK. (5) a, = T, -q, zlx, l

'+ P Ix, -x, l 'q, q, .
k&j

(6)

In the atomic case (K=1) this can be strengthened
to

Q& 2Z+Q q, /Q.

The strict inequality in Eqs. (5) and (6) is im-
portant; in the atomic case with q = 1 and ~ inte-
gral, Eq. (5) implies

Nc

For a hydrogen atom (z = 1), Eq. (7) implies
that N, =2 (since it is known that two electrons
can, in fact, be bound). H is not stable. This
result had not been proved before, although there
exist partial results in this direction. '

Although Eq. (7) is far from optimal when z is
large [in view of the N=z+0(1) conjecture], it
is the strongest explicit estimate obtained so far
and it is of the right order of magnitude for bo-
sons (recalling the N, & 1.2z result' ).

The theorem holds even if the nuclei are not
points, but are spherical charge distributions,
i.e., I

x —R
I

' is replaced by J dp. (y) I y- x - R I

'
in Eq. (1), where p, is any positive, spherical
measure of unit total charge.

If the nuclear coordinates, R, , are dynamical
instead of fixed, a weaker theorem holds. Let
H„=H„+T„„,1 + U{R), where T„„,1 is the nuclear
kinetic energy [consisting of terms of the form
in Eqs. (3) and (4)] and U(R) is a potential de-
pending on the nuclear coordinates. Let E„be
the ground-state energy of H~ and let E„," be
the ground-state energy when the nuclear masses
are infinite (i.e., T„„,1 is omitted) and the nega, -
tive particle j is removed. If E» is the ground-
state energy when particle j is removed, but

T„„,& is retained, it is easy to see that E~, ~ F~
and E„,~ E~, ". The theorem for dynamical nu-

clei, which assumes an additional inequality, is
the following.

Theo~em 2,—If the N-particle system is bound
and if, in addition, F.„=E~,."for all j =1, . . .,X,
then Eq. (5) [respectively Eq. (6) for %=1]holds.

The proof of the theorems is simple enough to
be given in an elementary quantum mechanics

Assume that the system is bound and let g be the
ground state (which is real). Multiply the Schro-
dinger equation, H„g=E„(, by Ix,. lg and inte-
grate over all N variables. Let X,. denote all the
N- 1 variables other than xj For the H„j term,
do the d"" "Xj integration first; by the varia-
tional principle, the X,. integral is, for each fixed
x, , not less than E„,. (—= the ground-state energy
of H„, ) times the same integral without H„, This
inequality is preserved after the x,. integration
since Ix, I is a positive weight. Thus

& lx; I 0 IH~, ; I e& -1~,, (lx, I e I e&. (9)

Recalling the easily proved fact that E„&E„j,
we have

The claim is that Eq. (10) cannot hold for all j if
condition (6) is violated.

First, the term t, =(Ix, I g I
.p,.'Ig& is positive.

To see this, do the x,. integration first and note
that it then suffices to prove the following for any
function, f, of one variable:

t = —f I
x

I f (x) v'f (x) d'x & 0.

Write g(x) =
I x

I f (x) and integrate by parts:

t= fvg(x) (Ixl 'vg(x)+g(x)vlxl ')d'x

= f{lvg(x)l'Ixl '--,'g(x)'v'Ixl ']d'x&0

since v'Ixl '& 0. (The fact thatgvg=vg'/2, to-
gether with another integration by parts, was
used for the second term. )

The second term ink j is easy:

A;-=q, &lx, I 0 I I'(x;) I e& =q, z&q I 0& =q, z,
with the assumption that g is normalized.

The third term is

R, =- f 0 (&)'I xl g q, ql x;- xl
' d '"&,

k&j

where X denotes all the N variables.
If there is binding then Eq. (10) holds for all

j and hence, summing over j and using tj& 0, we
have that A-=Q, A, &5~,R, = R. On. the .one-hand,
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A = zP, q, =z Q. On the other hand,

& = l fq(&)'gg q~ ~» Ix, —x.l
'(I x;I+

I x, I)d'"~

But Ix,.I+Ix, I

- Ix, —x» I
(triangle inequality), so

that

~- 2ppe q»=2@'-2ge&'

Hence, binding implies that

Q -Q,.q, & 2zQ,

which is precisely Eq. (6). Q.E.D.
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