Background Terms for Second-Sound Damping near T_{λ}

In a recent Letter Ferrell and Bhattacharjee¹ (FB) attempted to explain the disagreement between their previous theory² of second-sound damping D_2 and experiment³ in the background region $[t = (T - T_{\lambda})/T_{\lambda} \approx -0.02]$ in terms of a correction which was missed originally² because the background value of D_2 had been determined by extrapolation from above T_{λ} . Their estimate of this correction led to a 30% effect,¹ thus bringing their earlier calculations² into agreement with the experiments of Crooks and Robinson.³ Moreover, since this correction was left out of the theory based on the renormalization group,^{4,5} its inclusion would spoil the agreement with experiment³ claimed for that theory.^{4,5} While we agree that the correction discussed by FB should appear below T_{λ} (along with many other analytic corrections), we show in this Comment that its size has been severely overestimated.¹ It follows that this term does not change the theoretical values of D_2 appreciably at t = -0.02, and so cannot be used to improve one calculation² or invalidate another.4-6

To summarize the argument of FB, we separate D_2 into a singular and a background contribution $D_2 = D_2^{\ S} + D_2^{\ B} = D_2^{\ S} + \lambda_B / C_{p'} + \overline{B}_{\psi}(t)$. The singular part $D_2^{\ S}$ was earlier² evaluated to be $D_2^{\ S} = (\lambda - \lambda_B)/C_{p'}$, where λ is the thermal conductivity above T_{λ} , λ_B its background value, and $C_{p'}$ the specific heat below T_{λ} . The background orderparameter relaxation is given by

$$\overline{B}_{\psi}(t) = B_{\psi} + B_{\psi}'(t) = B_{\psi} (1 + b\rho_s / \rho_n), \qquad (1)$$

where the constant $B_{\psi} = 1.05 \times 10^{-4} \text{ cm}^2/\text{s}$ was determined² from data above T_{λ} , and the new term B_{ψ}' depends on the existence of a superfluid density ρ_s . To estimate it, we may appeal to the exact hydrodynamic formulas

$$D_{2} = (\rho_{s}/\rho_{n}\rho)(\frac{4}{3}\eta + \zeta_{2} + \rho^{2}\zeta_{3} - 2\rho\zeta_{1}) + \lambda'/C_{p}',$$

$$D_{1} = \rho^{-1}(\frac{4}{3}\eta + \zeta_{2}).$$

In the range $|t| \gtrsim 0.02$ FB assumed that the singular part $D_2^{s}(t)$ was negligible, which implies $\overline{B}_{\psi}(t) = (\rho_s / \rho_n \rho)(\frac{4}{3}\eta + \zeta_2 + \rho^2 \zeta_3 - 2\rho \zeta_1)$. A crude estimate of the right-hand side of this equation is obtained by neglecting the term $\rho^2 \zeta_3 - 2\rho \zeta_1$, which yields

$$\overline{B}_{\psi}(t) \approx (\rho_s / \rho_n) D_1, \qquad (2)$$

corresponding to Eq. (11) of Ref. 1. In the tem-

perature range $10^{-3} < |t| < 5 \times 10^{-2}$, D_2 is reasonably well approximated by its background value, but D_1 has a strong divergence. If the full experimental value⁷ of D_1 is inserted into the righthand side of (2) the result is *independent* of t in this range and equal to $1.2 \times 10^{-4} \text{ cm}^2/\text{sec.}$ The experimental result for $D_1 \rho_s / \rho_n$ agrees with (1) and (2) and the estimate^{2,8} $B_{\psi} = 1.05 \times 10^{-4} \text{ cm}^2/\text{s}$ only if b < 1. Thus the B_{ψ}' term is negligible compared to B_{ψ} for $|t| \approx 0.02$, and the earlier procedure^{2,4,5} used to estimate the background terms in D_2 is consistent. FB arbitrarily pick out the contribution to (2) from the background part of D_1 , and equate it to B_{ψ}' , thus obtaining the large value $b \approx 5$. They have not explained^{1,9} how their procedure is consistent with the exact hydrodynamic formulas for D_1 and D_2 which lead to Eq. (2).

The authors thank B. I. Halperin for valuable discussions. This work was supported in part by National Science Foundation Grant No. DMR-7923289.

G. Ahlers

Physics Department University of California at Santa Barbara Santa Barbara, California 93106

P. C. Hohenberg Bell Laboratories, Murray Hill, New Jersey 07974

Received 1 September 1983 PACS numbers: 67.40 Pm, 67.40 Fd

¹R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. Lett. <u>51</u>, 487 (1983).

 2 R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. B <u>24</u>, 5071 (1981).

³M. J. Crooks and B. J.Robinson, Phys. Rev. B <u>27</u>, 5433 (1983).

⁴V. Dohm and R. Folk, Z. Phys. B <u>45</u>, 129 (1981).

⁵G. Ahlers, P. C. Hohenberg, and A. Kornblit, Phys. Rev. B $\underline{25}$, 3136 (1982).

⁶More precise recent experiments by R. Mehrotra and G. Ahlers [Phys. Rev. Lett. <u>51</u>, 2116 (1983)] have revealed some discrepancies with theory (Refs. 4 and 5), but these are of opposite sign to those discussed by FB, and their explanation awaits further theoretical developments.

⁷C. E. Chase Proc. Roy. Soc. London, Ser. A <u>220</u>, 116 (1953).

⁸The more precise analysis of Ref. 5 gave $B_{\psi} = 1.77 \times 10^{-4} \text{ cm}^2/\text{s}$, but exact agreement with $D_1 \rho_s / \rho_n$ is not expected in view of the neglect of $\rho^2 \zeta_3 - 2\rho \zeta_1$ in arriving at (2).

⁹R. A. Ferrell and J. K. Bhattacharjee, following Comment [Phys. Rev. Lett. <u>52</u>, 314 (1984)].