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Divergent Diamagnetism in Superconducting and Normal Metal Composites
near the Percolation Threshold
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The bare diamagnetic susceptibility y of a composite superconductor below the percola-
tion threshold p has been numerically calculated. A novel fitting procedure gives y
~ (Qp) ~ near p, with b =1.29 in dimension d=2, b =0.35 in d=3, the exponents agreeing
between site and bond percolation to within 0.02 in both cases. Similar effects give a
far-infrared absorption coefficient & in normal-metal-insulator composites varying as
a - ~ (gp) ~'+ ~~~ where s is the dielectric-constant exponent.

PACS numbers: 74.30.Ci, 74.40.+k, 74.70.Bv

In this Letter, we describe a calculation of the
diamagnetic susceptibility ln a composite SUper-
conductor at very low temperatures and near the
percolation threshold p, . The calculations show,
for the first time, that in three-dimensional sam-
ples the "bare" susceptibility (i.e., the suscepti-
bility calculated before taking into account local-
field corrections due to dipolar interactions be-
tween the finite clusters) diverges, although
weakly. In two dimensions, we find a much
stronger divergence for both site and bond perco-
lation. The two-dimensional bond results differ
slightly from the earlier results of Bammal and
Angles O'Auriac, ' obtained on considerably small-
er samples. For both d=2 and d=3 the diver-
gence is described by a power law, and the expo-
nent characterizing the divergence is approximate-
ly 1.29 in d=2, 0.35 in d=3, the exponents agree-
ing between site and bond percolation in both di-
mensionalities within the expected error of the
fit. Our calculations apply not only to disordered
superconducting networks below the percolation
threshold, but also to clusters of normal metal
in an insulating host, where they describe the
variation in the far-infrared absorption coeffi-
cient due to eddy currents circulating in loops of
normal metal near the percolation threshold.
This connection is described further below.

The divergent diamagnetic susceptibility orig-
inates in supercurrents which circulate in loops
of superconductor in response to an applied dc
magnetic field. As pointed out by de Gennes, '
this contribution is the only source of diamag-
netism in a network of superconducting wires
which are thin compared to a penetration depth.
It is expected to show critical behavior, possibly
diverging, near p, because the clusters that form
at such concentrations may be very large, and

may, in consequence, have large loops which can
support substantial magnetic moments.

To calculate the susceptibility arising from

such loops, we have considered a somewhat styl-
ized superconducting network, namely, an array
of superconducting grains, coupled together by
Josephson tunneling, and subject to an external
applied magnetic field B. The Hamiltonian for
such an array is

where J;, is the Josephson coupling energy be-
tween the i th and jth grains, y; is the phase
angle describing the superconducting order pa-
rameter on the ith grain, and &;,=(2w/C', ) j'A dT

t
is a phase factor arising from the variation of
Josephson coupling energy with vector potential
A. I,=bc j2e is a flux quantum, and the sum
runs over all distinct bonds between pairs of
grains. We assume a bimodal distribution of
couplings, all coupling energies being either J
or zero. In site percolation, grains are placed
on the sites of a lattice at random with probabil-
ity p, whereas in bond percolation the bond en-
ergies are J or zero with probability p or 1-p.
The zero-field ba~e diamagnetic susceptibility is
defined at zero temperatures by the condition

(2)

where 8 is the energy, V is the volume of the
system, and 0 is the external field. For small
values of the field, and finite clusters, the cosine
factors in (1) can be expanded in powers of their
arguments, and the phase-dependent part of the
energy takes the form

—=min P (j:.—y -A )
2 (3)

( ij)
For the purpose of calculating the zero field sus--
ceptibility below the percolation threshold (where
there are only finite clusters), the flux through
any cluster is much less than a flux quantum and
therefore this expansion is exact. The equations
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of minimization are

g, (y, —y, -A, , ) =0, (4)

]- v/v.
lO ' —IO

where the sum runs over all neighbors which are
connected to site i by nonvanishing bonds. For a
given value of I3, this is a system of coupled
linear equations of dimensionality equal to the
number of grains in the cluster. (One phase in
each cluster can, of course, be chosen arbitrar-
ily. ) The effective size of the linear system can
be reduced by removing all dead ends, and all
bonds whose removal would cut a given cluster
into two unconnected parts; these bonds do not
contribute to the susceptibility. The solution of
(4) gives values of the phase angles which are
linear in B, and hence an energy which is quadra-
tic in 8, from which the relevant susceptibility
can be extracted.

For a simple loop of perimeter P and projected
area S perpendicular to the field, it is readily
shown that (4) gives a moment which is propor-
tional to S'/P. For several connected loops, Eq.
(4) can be converted into an expression equivalent
to de Gennes's, involving projected loop areas
perpendicular to the field and perimeters as
variables. In practice, we find that for large
clusters containing N, sites, the effective value
of S'/P tends to increase faster than N„with
great statistical fluctuations, giving rise to a
divergent susceptibility. The large clusters are
usually very "stringy" with not many large loops„

We have calculated g from Eq. (4), for both
site and bond percolation on square and simple
cubic lattices. The relevant linear systems of
equations were solved with an envelope-reduction
algorithm for large, sparse, positive-definite
matrices. ' Sample conf igurations were obtained
by either of two methods: (i) Sites or bonds were
put down at random with probability p(p, on an
N xN or NxN x N lattice with periodic boundary
conditions; or (ii) individual clusters were grown
one at a time from an initial seed of one site by
adding sites or bonds to the perimeter with prob-
ability p, as described in the literature. ' The
latter method gives a larger proportion of large
clusters, and cannot exhibit any finite-size ef-
fects, but yields the same values of y as method
(i). In all calculations carried out by method (i),
y was obtained by averaging over twenty runs on
a 216' or 36' lattice, while those based on (ii) in-
volved (1-2) &&10' sites. Our numerical "samples'*
are thus comparable in number of superconduct-
ing grains to many experimental superconducting
arrays, ' although smaller than the disordered
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FIG. 1. Calculated susceptibility for square and
simple cubic superconducting lattices below the per-
colation threshold. The circles denote calculated
points for site percolation, the squares denote bond
percolation, and the solid lines are the analytic fits
as described in the text.

superconductors in which magnetic field effects
have been studied to date. '

Our results are shown in Fig. 1. In both num-
bers of dimensions, some data points are obtained
by method (i) (except near p, ) and some by (ii);
we have not distinguished between them because
they both lie on the same curve to within statisti-
cal fluctuations. Our units are such that an ele-
mentary square loop oriented perpendicular to
the field contributes 0.25 to the magnetic moment
per unit field [this is S'/P for a square of unit
edge]. The results, especially for d =3, do not
approach an expected asymptotic power-law be-
havior in p, -p at least until 1 -p/p, (0.1, pre-
sumably because very few loops are formed at
all until P is relatively close to p, .

Because the critical part of the susceptibility is
apparently rather small, we have fitted the four
curves with an analytic form which interpolates
between the calculable power-series form,
= Qa„p", at low p and the expected power law,
—y=A[(P, -P)/P, ] ', in the critical region. For
all present lattices, -y=a, p'+ag'+. . . at
small p, with a4= & for all four cases, and a6 3

(d=2, site), ~ (d=2, bond), ~»(d=3, site) a,nd

~ (d=3, bond). Including both of these coeffi-
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TABLE I. Calculated exponent g describing the divergence of —y in d
=2 and 3. The corresponding values of g are 6.41x10 3 (d=2, site),
5.06x 10 (d=2, bond), 1.99x 10 (d=3, site) and 1.35 x10 (d=3,
bond). The bracketed values represent the predictions g =2p- t+ P (Ref.
9) and g =Pp —t (Bef. 2), respectively [using the values of (Bef. 12) for
the exponents] .

Lattice
d 2 f

site
d=2
bond

d=3
site

d=3
bond

Exponent 1.30 1.28
I 1.54+0.08, 1.40+0.08]

0.35 0.33
[0.26 + 0.15,—0.15 + 0.15]

cients, we used the analytic form

(5)

While this expression may appear unnecessarily
complex, it is the simplest form we could invent
which has the proper analytic behavior in both
limits and which allows a simple fitting procedure
to determine independently the values of A and b

in the singularity at p, . Simplification of Eq. (5)
would mean we could not keep a4 and a, matched
to their proper values (with a, =a, =a, =a, =a, =0)
or A and b would become functionally related and
hence not independent parameters. With use of
Eq. (5), A and b are obtained by plotting

(p/p. )'l [ I XI/( .p')1-( .p. '/ .)(p. /p -1)
against the variable

( p. /p)'»(1 —p/p. ) +(p./p+, )(p./p —1)

in which case, ln[(A/(a, p, ')] and -b are the y
intercept and slope of a least-squares fit. The'

quality of the fits is shown in Fig. 1; the correla-
tion coefficients of the fits are 0.997 (d =2, site),
0.996 (d=2, bond), 0.995 (d=3, site), 0.969 (d=3,
bond). 7 The resulting exponents are shown in
Table I.'

It is of interest to compare the present results
with scaling predictions and other previous work.
Rammal, Toulouse, and Lubensky' have postu-
lated a scaling description of superconducting
diamagnetism near the percolation threshold,
which leads to the prediction -g~(Ap)
where t, v, and P are standard percolation expon-
ents. A simpler argument by de Gennes' leads
to -y ~(bp) ~" ". The numerical values corre-
sponding to these exponents are also listed in
Table I. Numerical results from small lattices
by Rammal and Angles d'Auriac' give b =1.54 in
d=2. All of these values, for d=2, differ sharp-
ly from the analytic result of Stephen" for the

I self-similar model of a two-dimensional perco-
lation cluster known as a Sierpinski gasket, for
which b= -0.77 (i.e., no divergence in -y). Our
present results are in very good agreement with
the scaling predictions' in d = 3. For d = 2, they
disagree by a small amount that appears to lie
outside the possible inaccuracies of our calcula-
tion. The prediction 6=2' —t, ' on the other hand,
gives the wrong sign in d=3. We tentatively con-
clude that the scaling theory requires some modi-
fication in order to bring it into agreement with
numerical experiment. Note also that our work
provides support for the hypothesis of universal-
ity: Agreement between site and bond percola-
tion is extremely good in both 4= 2 and d =3.

Note that for a weakly linked superconductor
such as is modeled here, the numbers plotted in
Fig. 1 must be multiplied by 4n'Ja/4, ', where a
is the lattice constant of the "grain lattice, "J the
Josephson coupling energy, and C, =bc/2e an
elementary flux quantum. For a 10-pm grain
separation and a 10-K coupling energy, this fac-
tor is -4x10 '.

Another possible method of observing this diver-
gence would be in a composite of normal' metal
and insulator below the percolation threshold. In
such materials, a long-wavelength electromag-
netic wave (of frequency ~) will set up oscillating
diamagnetic currents in loops of metal grains,
and hence an energy absorption varying as ~' and
with a coefficient that diverges near the percola-
tion threshold. Loops of cross section 8, perim-
eter P, composed of wires of cross-sectional
area vr and conductivity o, and placed perpendic-
ular to magnetic field Be ' ', will exhibit an in-
duced moment m = i[~o(&r ')/(2c') ]BS'/P. The
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geometrical factor involved in this response is
the same as in the superconducting case. From
this we estimate that a diluted square or cubic
mesh composed of such wires will have a mag-
netic permeability

p-1+4vi[(oo(vr')/2c'] )(,=- p., +i tt„ (6)

where )(, is the susceptibility shown in Fig. 1.
The propagation constant is given by tt = (~/

c)(ett)' ' where s = s, + s, is the dielectric constant
of the medium. Now s, -(p, —p) ' near p„"
where s is another percolation exponent (s-1.3
in d=2, 0.7 in d=3)." If the effects of divergent
dielectric and diamagnetic response can be treat-
ed independently by invoking a multiplicative
index of refraction n = (sit)' ', then the loops
produce an infrared absorption coefficient a =—Jme- —,'((d/c)s, ' p, OI

to
(p p)-(s+a)/2

C C
(7)

This is to be compared with a magnetic dipole
absorption coefficient u =2su'err'p/5c' for a
small volume fraction p of conducting spheres of
radius r. The presence of closed loops thus
greatly enhances this magnetic dipole absorption,
and may therefore contribute to the anomalously
large coefficient of n that has often been reported
in far-infrared absorption by small metal par-
ticles. " It would be of great interest to see this
divergence experimentally. Quite apart from the
divergence, furthermore, such loops could great-
ly enhance the far-ir absorption even at low P, if
some mechanism (e.g. , short-range order) ex-
isted which tended to form more large loops than
would be expected randomly. Such a mechanism
could possibly account for the large discrepancy
between far-ir measurements and previous theo-
ries. "
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