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Explicit saddle surfaces and return jump rates are calculated for model crystals; the
results establish the validity of rate calculations for atomic jumps in solids. A nonphys-
ical effect, in which isotopic substitution causes a "return jump catastrophe, " is re-
solved by use of an exact momentum-dependent criterion to distinguish successful jumps.

PACS numbers: 66.30.Dn, 68.10.Jy
We describe a theory which permits accurate

calculations of jump rates' for atomic migration
in model solids. Accurate rates have previously
been available only from molecular-dynamics
simulations. ' The present analytic methods are
generally applicable to processes in which suc-
cessive jumps are well spaced. Our results in-
clude (i) a demonstration that statistical theories
of diffusion are widely valid for ordinary solids;
and (ii) a method for constructing saddle surfaces
for diffusion, including an accurate determination
of the saddle surface for diffusion by vacancies in
model fcc solids, and an accurate evaluation of
the dynamical return-jump frequency. These
procedures for calculating absolute jump rates
open the path to precise future Monte Carlo deter-
minations both of energies, entropies, and vol-
umes of migration for any chosen interatomic po-
tential, and of the derivatives of these parame-
ters with respect to thermodynamic variables.
The latter quantities have been the topic of con-
siderable unresolved discussion. Finally, in an
accurate evaluation of the mass dependence of
jump rates we encounter an "isotope effect catas-
trophe" in which clearly nonphysical effects arise
from return jumps. The resolution of this prob-
lem provides a new conceptual basis for jump
theories.

It is widely recogn. ized that statistical treat-
ments of atomic jumps (e.g. , rate theory} can
predict correct transition rates between configu-
rations, but erroneously assume that randomiza-
tion occurs between transitions. ' The present
work is based on an &n+at& by Flynn and Jacucci
(FJ) that, to be nonrandom, successive transi-
tions must occur with very little time delay."
We analyze the process of vacancy diffusion in
model fcc crystals, for which the important non-
random process is the immediate return jump. '

First we obtain the form of the potential barrier
which inhibits jumps, and then determine the
shape and potential of the saddle surface; from
these we calculate both the total transition rate
and the rate of immediate return jumps. The cal-
culations have been performed for several realis-
tic interatomic force laws. In all cases the re-
turn-jump fraction is small, & 10/o even at high
temperature, and less at low temperature.
These results establish the validity of the rate-
theory approach, and make possible the accurate
calculation of jump rates for any chosen model
crystal. We describe a specific example before
turning to more fundamental issues in what fol-
lows.

To construct the required saddle surface we
first determine the saddle-point configuration of
the crystal for the vacancy jump. This proceeds
by damped molecular dynamics and is finally per-
fected by Taylor expansion in terms of atomic dis-
placements. The expansion then allows a diago-
nalization of the potential, V, which gives the
eigenvalues and eigenveetors. One eigenvalue is
negative; its eigenvector points along the jump
direction, say f, in the 3+-dimensional configura-
tion space of the model crystal with N atoms.
3N —1 eigenvectors provide coordinates (;, i =1,
2, . .., 3N —1, in the saddle Plane. Our choice of
momentum-independent saddle surface is the
' watershed" obtained by passing from the saddle
point up the maximum gradient. At the saddle
point the saddle plane is tangent to the saddle sur-
face but the two do not generally coincide else-
where. We wish to find the form of the saddle
surface. This may be specified by the displace-
ment f of the saddle surface perpendicular to the
saddle plane, viz. 0 =L(($;}). To proceed further
we must determine the form of this relationship.

Since, in retrospect, the deviation of the sad-
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FlG. 1. Distributions of squared principal curvatures

of the saddle surface for vacancy jumps in Lennard-
Jones 31- and 107-atom cyclically repeating crystals.
The atomic displacements in a direction of highest
principal curvature are shown projected both {a) in the
{110)plane normal to the atomic jump, and P)) in the
parallel {100)plane. Circles denote atoms in the cen-
tral plane, including the jumping atom. Squares de-
note atoms belonging to the two adjacent planes above
and below. The twin directions of identical principal
curvature are related by mirror reflection from the
(110) plane through the central atom o= 3.4 A f.or Ar
is the length scale in the Lennard-Jones potential.

die surface from the plane produces significant
but not large effects, it is appropriate to expand
0 in a power series,

& = r L&
~ &~ &, + 6 & J3'", & &, & a+ ~ ~ ~ ~

ijk

The coefficients n, P, etc. , can then be connected
with the derivatives V; =3V/3t;, V», =8'V/8t; 8$, ,
etc. , of the potential V (writing L -=$, for conveni-
ence). By definition, n &V =0 on the saddle sur-
face, whose normal is here written n. When dif-
ferentiated hvice for displacements in the saddle
surface and evaluated at the saddle point, this
equation yields

n, , =v„, /(v, , + v, , —v„)
(noting that a;; =-8~; /8$; = —8~; /8$; there).
Similar expressions can be obtained for P, etc.
The power series for L may thus be identified
from the derivatives of the potential evaluated at
the saddle point. In the present calculation it has
been sufficient to consider the a;j alone. For the
fcc vacancy, symmetry dictates that the eigen-

TABLE I. Upper bound on return jump rates close
to the melting point. The values of fcc lattice pararn-
eter and temperature were 4.1252, 5.4546, and 3.6963
A and 933, 80, and 1388 K for Al, Ar, and Cu, re-
spectively.
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values p„' of the tluadratic form Q, , a, , t', (, oc-
cur in pairs with equal and opposite values. One
then has

& =pZ. p. '(n. ' n-."), (3)
with the p„principal radii of saddle-surface cur-
vature at the saddle point, and g „,q „' the coordi-
nates parallel to the curvatures p„',—p„'.

We have evaluated coefficients &;j for several
model fcc crystals with pair forces corresponding
approximately to the cases of Ar, Cu, and Al. '
From these coefficients we obtain the diagonal
curvatures p„'. Evaluations for crystals having
N =31 and N =107 atoms (and with periodic bounda-
ry conditions to minimize surface effects) show
a behavior which is both remarkable and simple.
In most directions of configuration space the sad-
dle surface is essentially flat. Five or six pairs
of eigenvalues p„' are much larger than the re-
mainder, and these are insensitive to N. Figure
1 shows as examples the spectra of p„' for Ar
with Ã =31 and N =107. %e find that the direc-
tions with large p ' correspond to patterns of
atomic displacements which are confined to atoms
near the jumping atom. The displacements for
the direction of largest curvature of the Ar sad-
dle surface are shown in Fig. 1.

An important application is the evaluation of
dynamical return-jump frequencies. As noted by
FJ,' there is a critical velocity s, at which a rep-
resentative point moves parallel to a saddle sur-
face of curvature p:

s (exp)u (4)
with x the perpendicular distance to the saddle
surface (see Ref 3), an. d V =V, -»'/2 the sec-
ond-order variation of the potential along &. Fast
return jumps have higher velocities. FJ show
that the fraction R'/R of return jumps depends on
(p '), averaged over all orientations in the sad-
dle surface. For the surface in Eq. (3) this aver
age 18

a /ft=(2Ir/n)P l/p '
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Hence by substitution of the inverse curvatures
described above we find the return-jump rates re-
ported in Table I for Ar, Cu, and Al. Our most
sign. ificant numerical results are, first, that the
calculated R'/R depends only weakly on N; and
second, that while the return-jump fraction va-
ries significantly among the three cases, it re-
mains well below 10Vo, even at the melting tem-
perature.

These results have a central importance for
the theory of atomic migration in crystals. At
all temperatures, only a small fraction of atomic
jumps is dynamically eliminated by the subse-
quent short-time evolution of the system. ' We
thus establish that the rate-theory model is ap-
propriate for ordinary solids. Its incorrect
treatment of randomization is often a minor er-
ror which can be rectified by an accurate account-
ing for dynamical return jumps. In future, ther-
modynamic averages on the actual curved saddle
surface, Eq. (3) (obtained for example by Monte
Carlo methods), will provide raw jump frequen-
cies. These can be corrected for inevitable re-
turn jumps to leave the required frequency of dy-
namically independent events. Calculations of
this type, now in progress in our laboratories,
yield absolute jump frequencies correct to within
a few percent, which is comparable with the ac-
curacy of the best experiments. It will be pos-
sible by these methods to explore the influence
of the interatomic potential on the atomic migra-
tion rate in model solids, and to compare the
model properties with the behavior of real solids.

While the preceding results remain valid in
most practical cases, there nevertheless remain
circumstances where rate theory breaks down.
As pointed out by FJ this happens, for example,
for low barriers when return jumps become very
numerous. A return jump catastrophe' occurs,
and it is no longer possible to keep track of the
configuration to which a particular trajectory be-
longs. Thus the method fails. We have subse-
quently realized that a catastrophe can be induced
for essentially all interatomic potentials by
changing the atomic masses appropriately. This
breakdown points to a critical flaw in the con-
ceptual basis of rate theory. We first discuss
briefly the symptoms of this breakdown, through
the isotope effect in diffusion, and then its cure
through the identification of the critical jump
condition with the center manifold in phase space.

The ratio ~'/w of jump rates when the jumping
mass is changed from the mass ~ of lattice atoms
to M' may be specified by w'/m =[1+~(M'- M)/

TABLE II. Harmonic and anharmonic isotope-effect
factors.

Kp Kr&u

CU

31
107
255

31
107

31
107

0.9229
0.9133
0.9125
0.9124
0.9609
0.9774
0.9789
0.9365
0.9363

—0.0188
—0.0194

—0.0196
-0.0139
—0.0167
—0.0178
—0.0153

0.0041
0.8939

0.8928
0.9470
0.9607
0.9611
0.9212
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M] "' where ~ =1 for an independent classical
particle. In. the crystal the appropriate effective
mass in c I& "' is the inertia perpendicular to
the saddle surface in configuration space. It is
the squared projection of the surface normal onto
the subspace of the jumping atom. ' If the value
at the saddle point is &„ the thermal average
over the surface, Eq. (3), is ~ =~, —&~T. We
have evaluated &, and &~ for our models of Ar,
Cu, and Al, with the results given in Table II.
The values of & compare reasonably with experi-
ment, where available. '" wo is lower for the
softer metallic structures that relax more around
defects. &~T reduces & by only one or two per-
cent.

A third contribution w& to & occurs because the
return-jump fraction also is isotope dependent. '
The calculation of this term can be carried out
generally for the surface, Eq. (3); the result
is Ks = A. R'/R with & = 2 typically for the curvature
modes (see above) in our model crystals. This
positive term is about 0.1 at 1', which gives
clearly nonphysical & & 1 in some cases. The
mass dependence of the return-jump rate which
causes z~ is R'/R -R,(M,/M)', in which R, de-
pends on the state variables but not the atomic
masses. This same mass dependence can also
cause a return-jump catastrophe. Since R'/R
-0.05 at T„for M = M~ (=M'), a system with
M„(=M') -3M has R'/R -0.5 at T . Multiple
crossings of the saddle surface then proliferate
and rate theory breaks down. The physical origin
of these two effects is easily understood. As M &

increases, the corresponding thermal velocity
decreases and fewer jumps are caused by motion
perpendicular to the saddle surface S. Accord-
ingly, the proportion of jumps induced by motion
locally Parallel to the curved saddle surface S
increases, and with it the fraction of return jumps
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caused by the same curvature. Since, as M&
becomes large, the system lingers near S, one
can see also that more complicated trajectories
may become prevalent, which cut 8 three, four,
or more times. Rate theory is then not valid.

The problem has fundamental origins. We have
first erected a curved saddle surface to fix the
proper potential energy of transitions. Then, in
correcting for inherent return jumps within the
FJ Ansatz, a momentum-dependent jump crite-
rion, Eq. (4), is encountered. The correct def-
inition of a configuration is evidently both posi-
tion (potential energy) dependent and momentum
dependent. Therefore a surfacein Phase space
is needed to distinguish separate configurations,
and to count transition rates which contain no
dynamically inevitable return jumps within the
FJ Ansatz.

A precise method for separating successful
and unsuccessful jumps can be adapted from the
literature on invariant mainfolds. " In the 6N-
dimensional phase space of a dynamical system,
the center manifold is the intersection of two
6N-1 dimensional surfaces which divide the vec-
tor flow field into four regions A, &, C, and D.
Of these, the flows in& and C correspond, re-
spectively, to foward and backward jumps which
are successful within the FJ Ansat~, and those
in & and D correspond to unsuccessful jumps.
The net forward flow is thus determined by a
flow integral over a surface through A extending
from the center manifold out to inaccessible re-
gions of phase space. Stokes's theorem trans-
forms this to an integral over the center mani-
fold alone. Our work thus identifies the center
manifold as a generalized saddle surface for rate
calculations which are correct within the FJ
Ans at@.

We have made explicit calculations using these
ideas for model potentials. Full details will be
reported elsewhere. The total jump fluxes so
obtained are very close to those determined for
the watershed saddle surface. However, all trace
of the mass-dependent return-jump catastrophe
is eliminated from the isotope effect. The pre-

sent results therefore appear to provide both a
means for calculating accurate jump rates and a
more satisfactory conceptual foundation for theo-
ries of the jump process.
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