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The phase diagram of a system of hard ellipsoids of revolution was investigated by
means of constant-pressure Monte Carlo simulation. Prolate as well as oblate ellipsoids
were considered. The results for the isotherms of the system at several different values
of the length-to-breadth ratio are presented. Four different phases of the system are
identified and a tentative picture of the phase diagram is given.
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At present our knowledge of systems composed
of nonspherical particles is very limited com-
pared to what we know about the hard- sphere sys-
tem. Since nonsphericity is expected to give rise
to new types of behavior such as liquid-crystal-
line order, it is of considerable interest to study
its effects. Several theories have to date been
proposed to describe the possibility of long-range
orientational order in nonspherical-hard-particle
fluids. ' Thus far the predictions of such theories
could not be tested, as no numerical data were
available on the orientationally and/or transla-
tionally ordered phases of these systems. (For
the isotropic phase see, however, Vieillard-
Baron. ') More seriously the existing hard-par-
ticle theories ignore the possibility of freezing
altogether. As a consequence these theories
might well predict a transition to an orientation-
ally ordered fluid phase at a pressure where the
solid phase is actually thermodynamically more
stable.

In this Letter we present a Monte Carlo study
of different systems composed of hard ellipsoids
of revolution conveniently parametrized by the
length-to-breadth ratio x=&/5, where a and 5 de-
note the lengths of the major and minor axes of
the ellipsoids. This model includes as limiting
cases, the hard-sphere, hard-platelet, and hard-
needle systems, about which independent informa-
tion is available. "Before presenting our re-
sults, we briefly describe the computational pro-
cedure.

We used constant-pressure Monte Carlo' sim-
ulation on systems of N=10' particles. 'The high-

density runs were started from a, close-packed
configuration obtained by expanding an fcc sphere
packing by a factor of x along the (111)direction,
yielding an orthorhombic lattice structure. We
did not investigate the possibility that another
crystal structure yields a more stable solid; ex-
perience with the hard-sphere solid suggests that
the free-energy difference between different
closed-packed structures is slight. ' Periodic
boundary conditions were employed. The number
of particles was chosen such that the shape of the
periodic box closely approximated a cube. Al-
lomed configurations mere generated with use of
an overlap criterion for ellipsoids given by Vieil-
lard-Baron. ' The volume-changing move was
made after every sweep of particle moves. In
the high-density region the different side lengths
of the box were allowed to fluctuate independently,
to allow for a possible nonisotropic density de-
pendence of the shape of the unit cell. A typical
number of 10' sweeps (10' particle moves) was
used to obtain equilibra. ted configurations, start-
ing from equilibrated samples at a slightly higher
or lower density. Averages calculated from
typically 104 equilibrium conf igurations included
the density p, the orientation-averaged pair dis-
tribution function g«"' (r„.), the short-range
second-rank order parameters g» "' (r, , ) = (P,(O,.

0;)), and the structure factor S(k) for three
orthogonal Bragg vectors. 'The unit of volume
chosen was &„=8&&'= 8»'. This yields the fol-
lowing dimensionless pressure P* = pPV„and
density p* = p V„.

Isotherms were calculated for the following

Qc 1984 The American Physical Society 2S7



VOLUME 52, NUMBER 4 PHYSICAL REVIEW LETTERS 23 JANUARY 1984

a
C3

o
(0

.25
I

, ~0
I

R/B=3

.7'5 1.00 1.25
I

DENSITY

.25
I

.50 .75 1.00 1.25
I I I I

R/B:2 e 75 PENSI T y

o
C3

C3
(0

a
C3

C3

a
C3

C3o
a

C3
C3

a

C3o
4

C3

I

I

t j
I
I
I

C3
C3

C3

C3

a
(T)

g I

I

(
I

C3

C3
C3

o C3

a ~o
o LLj

oo
C3

a

C3o
C3

P3
o'

.25
I

.50

R/B=2

~. -E
I I I

.75
I

I I

1.00 1.25
I I

ao
C3

C3o
C3
Q3

.25
I

.50 .75
I I

R/B=1. 25

I I

1.00 1,2~
I I

ao
C3

oo
o
Q7

ao
o
LA

C3
C3

a

ao
o

C3a
a

I

I

l

l

l

I

l

C3

o

oa

aa
4

C3

C3

C3
F)

LLJ
EC

(A
(A
LLJ

CL

a
C3

C3
CU

C3
C3

C3

o
C3

o
o
C3

a
oo

.B'

.25 .50

OEN5ITY

I I

.75 1. .00

a
C3

C3
I

1.25 1. 30 .25 .50

DENSITY

I

.75
I

1.00
I

1.25

ao
o

l. 50

FIG. l. Isotherms for systems of prolate ellipsoids with z =3.00, 2.75, 2.00, and 1.25 (fluid branch, open squares;
solid branch, open triangles). All dashed lines are polynomial fits to guide the eye. Pressure and density are given
in the reduced units as explained in the text. The arrows indicate the approximate location of the isotropic-fluid to
nematic-liquid-crystal transition in the cases z =3.00 and z =2.75. For z =1.25 the plastic to ordered-solid transi-
tions is likewise indicated.
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FIG. 2. The ratios of the densities at equal pressure
of systems with inverse length-to-breadth ratios, plot-
ted as a function of the density of the system with z &l.
From top to bottom we have crosses, x = 1.25 and g
=0.8. triangles, z =2.00 and& =0.5. circles, g =2.75
and g =0.3636; squares, g =3.00 and g =0.3333.

length-to-breadth ratios: &= 1.25, 2.00, 2.75,
3.00 (prolate) and &=0.8, 0.5, 0.3636. . . ,
0.3333. . . (oblate). The results for the prolate
systems are shown in Fig. 1.

We found a remarkable symmetry between the
systems with inverse length-to-breadth ratios.
This is evident from Fig. 2, where we plot the
ratio of the densities at equal pressure of pa, irs
of systems having inverse length-to-breadth
ratios. At low pressures, such symmetry is to
be expected, as in the present units the second
virial coefficients for x and 1/& ellipsoids are
equal. ' At higher pressures the observed sym-
metry, which even persists in the solid phase,
is quite surprising. However, knowledge about
the limiting cases & = 0 and & = ~ indicates that
this symmetry can be only approximate. ' The
Monte Carlo runs were made starting from either
a high-density solid, yielding the solid branch
of the isotherms, or by compressing a low-den-
sity fluid. (Sponta, neous nucleation has been ob-
served, but not characterized, for a/b = 1.25 and
for b/a=1. 25. ) The typical density difference be-
tween the fluid and solid branches was of the
order of (5-10)%. In the cases with x= 2.75 and
3.00 and their inverses x= 0.36. . . a,nd 0.33. . . ,
an orientationally ordered fluid phase was found
in the higher-density part of the fluid branch.
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FIG. 3. Tentative picture of the phase diagram.
Oblate ellipsoid systems correspond to z & 1. Open
circles indicate the location of the observed isotropic
to nematic transitions. The black squares are the
values for the coexistence densities of the hard-sphere
liquid to plastic-solid transition. The upper limit of
the density, p„= v 2, corresponds to close packing.

The transition from the isotropic fluid towards
this ordered phase shows no observable hyster-
esis in an expansion-compression cycle. The
density change at the transition was too small to
be detected with the present computational ac-
curacy [(1—2P/~]. The appearance of the orienta-
tionally ordered phase could be monitored by the
tail of the short-range second-rank order param-
eter, which approaches the square of the long-
range order parameter (P,) for large separations.

No ordered fluid phase was found for 0.5 (x &2

indica, ting that the bounds on the nematic region
in the phase diagram must lie somewhere be-
tween &= 2.75 and &= 2.00 for the prolate ellip-
soids, and &=0.36. . . and &=0.5 for the oblate
case. For the cases &=1.25 and &= 0.8 the lower-
density part of the solid branch was found to be a
plastic solid, i.e. , the particles were translation-
ally ordered, but the order parameter (P,) was
zero, suggesting that the particles are free to re-
orient. The density change at the transition from
this plastic solid to the ordered solid phase
(around p = 1.21) was too small to be observed.
No evidence was found for other types of liquid-
crystalline order (e.g. , smectic) in any of the
cases studied. The precise location of the thermo-
dynamic liquid-to-solid transition, which re-
quires the computation of the absolute free ener-
gy of the solid phase, is a point which we are cur-
rently investiga, ting. Combining all the informa-
tion up to now we arrive at the following tentative
picture of the phase diagram (Fig. 3). Note that
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in the present units the isotropic-nematic transi-
tions for hard platelets (&= 0) and hard needles
(x=~) occur at zero density. Details of the cal-
culations as well as comparison with current the-
ories will be presented elsewhere.

This research was performed under the auspic-
es of the U. S. Department of Energy.

'For a review, see M, A. Cotter, in The Molecula~

Physics of Liquid Crystals, edited by G. R. Luckhurst
and G. W. Gray (Academic, London, 1979).
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