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The possibility that a scalar boson is sometimes emitted in the decay of He(20. 1 Me&,
0+) is examined experimentally. Finding no positive evidence the authors exclude scalars
with Higgs-like couplings for 8 ~m &

&14 Mev/c, where the precise range depends upon
the model.

PACS numbers: 14.80.Gt, 14.80.Pb, 23.90.+sr

One exciting aspect of gauge theories is the
notion that new scalar bosons may await exper-
imental. discovery. "2 For example, the standard
model of electroweak interactions requires a
new neutral. seal. ar, the Higgs boson. Simpl. e as-
sumptions imply a heavy scalar, m~ ~ 6-7 GeV/
c',' but complications could spoil the bound.
Moreover, scalars seem ubiquitous in gauge
theories and it is prudent to search for them re-
gardless of mass. '

An earl. y suggestion of a l.ight scalar was based
on anomalous muonic x-ray shifts. '4 Resnick
etal 'argue. d that the relative shifts of Ba 4f -3d
and Pb 5g-4f could be accounted for by a force
mediated by a scalar with mass in the range 0
~ m~s 22 MeV/c' and Higgs-like couplings. This
possibil. ity motivated Kohler et al.' to search di-
rectly in the decays "O(6.05 MeV, O') -"O(g.s. ,
0')+ y and He(20. 1 MeV, O')- He(g. s. , O')+y.
The evidence for x-ray anomalies has not held
up' but Kohler et al. are generally credited with
excl.uding Higgs-like scalars with 1.030 ~ m~
~ 18.2 MeV/c'. ' Recently, however, Barroso
et al. ' noted that while the "Oexperiment provides
stringent limits in the range 1.03 &m ~ ~ 5.84
MeV/cs, the He experiment was incorrectly in-
terpreted and actually too insensitive to be use-
ful. In fact, we find that the experiment was two
orders of magnitude too insensitive to give limits
on particles l.ike the Higgs boson. To clarify
this issue we conducted a much more sensitive
search in 'He(20. 1 MeV, O') decay.

Helium-4 in the first excited 0' level E„=20.1
+0.05 MeV ' is produced by proton capture on
tritium. Any produced Higgs-like scalars with
mass above 1.022 MeV should decay primarily to
e'e with a lifetime on the order of nanoseconds.
We attempt to detect y -e'e with a wel. l shield-

ed NaI detector in which the signal approximates
that of a 20-MeV y ray. Higgs-like scalars
should be semiweakly interacting and, unlike di-
rect-capture photons, able to penetrate thick
shielding material. In this Letter we describe
the experiment and we compare the results to
availabl. e theory.

Figure 1 shows the experimental arrangement.
A 600-keV proton beam from the Argonne Na-
tional Laboratory Dynamitron bombards a tritium
target. The target is =30 p, g/cm' tritium im-
planted in = 1 mg/cm' erbium deposited over a
5-cm circl.e inside a tantalum "wobbler-target
cup." The wobbler spreads the irradiation on
the perimeter of a 4-cm circle mitigating tritium
loss from excessive heating. With the wobbler
an average power dissipation of ~ 70 W can be
tolerated. The maximum obtainabl. e beam cur-
rent is 100-120 p, A and the beam is pul. sed on and
off during alternate 100-msec periods. The prin-
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FIG. 1. Schematic diagram of the apparatus.
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eipal. background is cosmic rays so that pulsing
provides the best duty cycle consistent with avail-
able beam and target stability. The cosmic-ray
background is monitored during beam-off periods.

The detector is a 25&&25-cm NaI(T1) crystal
enclosed in a cylindrical 12-cm-thick plastic scin-
tillator anticoincidence counter and 11 cm of l.ead
shielding. A coll. imated hole in the lead shielding
is usual. ly pl.ugged with lead. Data are obtained in
two slightly different configurations. In run 1
the target is 30 cm from the NaI and the target
shielding is 11 cm of lead and 7.5 cm of depleted
uranium, giving an attenuation of -4&&10 'for a
20-MeV photopeak. " 12.8 C of protons are accu-
mul. ated. In run 2 the target to detector distance
is 25 cm and there is 22 cm of lead, giving an
attenuation of -1&&10 '.' In run 2, 11.5 C are
accumul. ated. The direct-capture y-ray angul. ar
distribution is nearly sin'L9," and thus the detec-
tor is at 0' to minimize the incident photon flux.

Figure 2(a) is the capture y-ray spectrum ob-
tained by removing the target shielding. Spectra
like Fig. 2(a) are used to monitor the NaI detec-
tor and the target. The y-ray yield, typically
0.9 count/pC, determines the product of the tar-
get thickness and y-ray detection efficiency when
combined with the known direct-capture differen-
tial cross section. " Since 20-MeV y rays in NaI
interact mostly by pair production, Fig. 2(a) is
similar to that expected for seal. ar y -e'e .

Figures 2(b) and 2(c) are the spectra from the
two runs. The cosmic-ray background spectra
are shown as histograms. The unvetoed cosmic-
ray rate is = 20 (MeV h) ' at 20 MeV. There is
no evidence for a "photopeak" at 20 MeV—the
signal for scalar decay —in either run with
shielding. The excess of counts above background
at energies below 20 MeV is from degraded show-
ers caused by capture y rays. The enhancement
in this background in run 2 relative to run 1 is
expected; the solid angl. e is larger and there is
less shielding. To obtain a limit we fitted with a
smooth function plus a peak which is simply the
observed capture y-ray spectrum times a con-
stant. " The largest acceptable peaks at the 2o

level are shown in Figs. 2(b) and 2(c).
The number of scalars detected per micro-

coulomb of aecumul. ated charge is given by the ex-
pression N~ =n, (o)nrem BP, wher'e n, = 6.25&& 10'2
is the number of protons per microcoulomb, (v)
is the known excitation cross section" averaged
over the proton energy loss in the impl. anted tar-
get (we find (v) =2.8 b), nr is the number of triti-
um nuclei per unit area, and & is the photopeak
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FIG. 2. y-ray spectra in the region above = 17 MeV.
(a) A spectrum of =20-MeV capture y rays with the
collimator plug and target shielding removed. (b) The
spectrum from run 1. The histogram is the cosmic-
ray background counted for equal time. The curve is
a fit with a smooth background plus the largest peak
with the same shape as spectrum (a) that is acceptable
at the 20 level. (c) The spectra from run 2.

efficiency for a 20-MeV photon. We determine
the product n~&& directl. y as noted above; we ob-
tain n~c = 1.0&&10". The branching ratio for
scalar decay, B= I'~/I', and P, the probability
that an emitted scalar decays inside the NaI, are
discussed in more detail. below.

The 2v upper limits for N„areN~ ~ 4.7&&10 '/
p. C from run 1, and N~ ~ 1~ 1X 10 '/pC from run
2. The experimental limit on N~ can be directly
interpreted as a bound on the product BI'. In-
stead, we chose to determine I' for a given y
lifetime and mass and express our results as a
l.imit on combinations of B and g. I' depends on
the effective solid angle and the experimental ge-
ometry as well. as g. For q = 5&&10 "sec corre-
sponding to m~= 12 MeV/c', we get P= 5x10 '
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for the run with 25 cm between target and detec-
tor. Figure 3 shows the region in the 8-q plane
excluded at 20 by the combined results of runs 1
and 2. The limits from Kohler et a/. ' in Fig. 3
are recalculated with use of Ref. 6 and the above
procedure. The relevant input values are N~ ~ 3
&& 10 /p, C (2&), (c)= 3.6 b, n z = 3 && 10'8, and e

=29%. For m~=12 MeV/c' we obtain P= 0.01 for
the geometry in Ref. 6. The improvement in this
work is due primarily to significantly better back-
ground rejection and much more accumulated
charge.

The quantities & and T depend on the scalar-
nucleon and scalar-electron coupling constants
g~„~and g ~„-,respectively. The expression for
7 is straightforward to obtain, '
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and for the simplest model of the Higgs boson
(the Weinberg model)

g -'/4m = (1/2m)m G F/W2= 3&&10 "
where G F is the Fermi constant.

The expression for p emission in 0' -0' transi-
tions in a nucl. eus with mass number A and charge
Z was obtained by Resnick et al. ,

'

g ~~JV A. R mug
16m Z 18 (q'+m ')'~'+(q'+m ')'~' '

where we use q'=E' —m~'. R is the electromag-
netic "transition radius" which also determines
the probability of pair decay, I',+, -= (n'/135m jR'
x~'.

The experimental value of 1',+,- = (l.l + 0.03)
&& 10 ' eV "and the total width I' = 0.270 + 0.050
MeV" allow us to determine & = I'~/&' up to a fac-
tor of gyp' o

Resnick et al. ' obtain an estimate for g~~ as-
suming that scalars explain the muonic x-ray
anomaly; they obtain g~~= 2.3x10 'e'." ~.

Shifman et +l."calculated g ~~ more directly.
They find that the main contributions to g ~~g are
from heavy quarks, obtaining g~» =n„2''0, ' '
(70 MeV), where n„is the number of "heavy"
quarks. Taking the s quark as heavy and antici-
pating the discovery of the t quark, we use n„=4.

The predictions for 8 and g are shown in Fig. 3.
The uncertainty in the theoretical predictions
from the experimental input is about + 4lp~. Thus
we contradict expectations based on Resnick et al.
in the range 4.5~ m~ ~ 14.1 MeV/c' and Shifman
et al. (with n„=4)in the range 2.8~ m~ ~ 11.5
MeV/c'. As previously noted, the mass region

FIG. 3. The experimentally excluded region (at the
20 level) in the lifetime-branching-ratio plane. The
previously excluded region (a) (at the 2& level) from
Kohler et al. is calculated by our procedure (see text)
with information in Ref. 6. The theoretical prediction
(g) is from Ref. 5 and (c) is from Ref. 14 (if we assume
four heavy quarks). The right-hand scale for ~& re-
fers to theories in which the cp coupling to e+e is mass
dependent in the standard fashion.

1.03 s m ~ s 5.8 MeV/c' is already excluded by
Kohler et al.

Other limits on light Higgs-like scalars have
been obtained from neutron-nucleus" scattering
and exotic decays of theK is and the g

i9 From
the decayK'-m'e+e, Willey and Yuis claim a
limit m~~ 325 MeV/c' subject, however, to con-
troversial theoretical interpretation. Without a
good way to access the reliability of estimates of
seal. ar couplings to different hadrons it is diffi-
cul. t to compare limits from searches with differ-
ent systems. However, 0' -0' nuclear decay is
possibl. y the most direct way to find very l.ight
Higgs-l, ike scalars.
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