
VOLUME 52, NUMBER 26 PHYSICAL REVIEW LETTERS

Fractal Geometry of Colloidal Aggregates
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Measurement of the fractal dimension, D, of colloidal aggregates of small silica particles is
reported. We observe power-law decay of the structure factor [S(k) —k o] by both light
and x-ray scattering showing that the aggregates are fractal. D is found to be 2.12+0.05,
which is intermediate between recent numerical results for the kinetic models of diffusion-
limited aggregation (D = 2.5) and cluster aggregation (D = 1.75), but is rather close to the
value for lattice animals (D = 2.0), which are equilibrium structures.

PACS numbers: 64.60.Cn, 05.40.+j, 61.10.Fr

Understanding aggregation has been a primary
goal in the field of colloidal physics for many years. '
In addition to its importance in commercial
processes, aggregation is a prototypical example of a
complicated random process which may display
such features as self-similarity, scaling, and univer-
sality. 2 These features have been revealed by com-
puter simulations. It has been shown recently,
for example, that the two most popular models,
diffusion-limited aggregation3 4 (DLA) and clus-
ter-cluster aggregation 6 (CA), produce ramified
structures that are self-similar in that the two-point
density-density correlation function p2(r) is of a
power-law form,

p, (r) —r ",

for values of r intermediate between the lattice con-
stant or monomer size a and the cluster size R.
Structures described by Eq. (1) are self-similar and
are known as fractals; their essential geometric
properties are independent of length scale. In d-

dimensional space, they are characterized by a frac-
tal or Hausdorff-Besicovitch dimension D related to
A by D = d —A. An immediate consequence of Eq.
(1) is that the radius of gyration of a cluster RG is
related to the number of particles it contains N, by

N, —RD (2)
A uniform object has D = d, while more open struc-
tures in which the density decreases with distance
from the center have D & d. Numerical simula-
tions have shown D to be —Sd/6 for DLA in d
dimensions for both lattice (2 ~ d ~ 6) and nonlat-
tice (d=2, 3) diffusion, independent of sticking
coefficient s (0.1» s ~ 1). Cluster aggregation in
which many particles diffuse and stick together to
form clusters which also diffuse and stick yields

self-similar aggregates having D =1.45 and 1.75 in
two and three dimensions, respectively.

Several experimental studies of the fractal nature
of aggregates have been reported7 9 but all involved
rather severe sample preparation like depositing the
aggregates on substrates or resuspending possibly
compressed powders in water. Here we report what
we believe to be the first definitive in situ measure-
ments made directly by scattering from suspensions
of the growing aggregates. In scattering experi-
ments which measure S (k), the Fourier transform
of p2(r), power-law correlation is revealed by an
equivalent power-law decay in S(k),

S(k) —k-, (3)
over the range RG ' & k & a '. For the system of
colloidal silica particles we studied a =27 A and
RG & 10 A, and we were able to observe clear
power-law behavior over more than two decades in
k using light and x-ray scattering. This shows very
clearly that the aggregates are of a fractal nature,
but we find D =2.12+0.05 which does not agree
with either DLA or CA.

The silica monomers used were Ludox particles
(Ludox SM, du Pont) which are stable as mono-
mers and small clusters in basic solutions but which
aggregate when the pH is reduced to 5.5 while the
salt concentration (NaC1) is increased to & 0.5 M.
This reduces the charge on the particles and de-
creases the Debye-Huckel screening length to the
point where particles become likely to approach
each other sufficiently closely as to allow van der
Waals binding to occur. Under these conditions the
clusters grow to "enormous" sizes ( & 1 p, m) and
even sediment under gravity eventually. Figure 1
shows an electron micrograph of such a cluster.

Two concentrations were studied with light
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FIG. 1. Electron micrograph of a silica cluster. The
bar is 5000 A.
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scattering (0.1 wt. % at 1 M NaC1, 0.5 wt. % at 1 M
NaC1) and one with x-ray scattering (1 wt. % at 0.5
M NaC1). Although aggregation rates were some-
what different, all three samples gave identical
values of D. Using light-scattering instrumentation
described previously, 'o we were able to measure
S(k) in the range 0.0002~k~0.002 A ', and
hence, in addition to studying the power-law regime
in S(k), we could also determine the size of the
clusters up to about 5000 A. After about 25 h, the
radius of gyration grew beyond this limit. This is
reminiscent of the divergence observed with gela-
tion, although the system was too dilute to actually
gel.

Small angle x-ray scattering (SAXS) data were
collected using a Kratky x-ra camera with a
rotating-anode source (1.54 ) and a linear,
position-sensitive detector. The solvent back-
ground was subtracted, but no corrections were
made for detector sensitivity or linearity. The
Kratky system" ' is a line-source instrument,
which means the data are "slit-smeared. " Because
of this slit smearing, the observed intensity l„(k)
differs's from Eq. (3) by a factor of k:

I„(k)—kS(k). (4)
In order to measure D directly from I„(k),
k 'I„(k) is plotted. Equation (4) is not correct
outside the power-law regime, but this problem is
of no concern here.

FIG. 2. Scattered light intensity profiles as aggregation
proceeds.

Figure 2 shows the temporal development of the
scattered light intensity I(k). During the early
stages of aggregation, the intensity showed a pro-
nounced maximum at small angles. This was not
observed in measurements on unaggregated Ludox,
although SAXS measurements gave a radius of
gyration of 55 A prior to aggregation, indicating
some clustering of the 27-A feed stock. However,
after aggregation for about an hour, a few large
clusters were visible in the scattering volume when
inspected in the forward direction through a tele-
scope. These clusters, which form quite early in the
aggregation process, are almost certainly responsi-
ble for the observed maximum and for the large er-
ror bars associated with the small-k data. The error
bars decrease as aggregation proceeds, and the max-
imum at small angles grows two decades in intensity
until 37 h after initiation I(k) is power-law over the
entire range of k. After —40 h, Fig. 3 shows that
I(k) remains power-law but decreases in amplitude
as very large aggregates sediment. Note that the
slope is essentially unchanged as clusters grow and
settle.

Power-law behavior for I(k) is a signature of
fractal structures. It is clear from Fig. 3 that these
clusters are fractal over 5000 A ) k ' ) 500 A. In
fact, if these are combined with x-ray results, as



VOLUME 52, NUMBER 26 PHYSICAL REVIEW LETTERS 25 JUNE 1984

I r l I I I I I ~

40

QJI-
Z

SLOPE TIME {hr} .0

0.000 1

s s i I

0.00 1

-2.078
-2.138
-2.1 45
-2.1 24

42
48
60
67

0.0 1

0.000 1 0.00 1

K (1/A)

0.0 1 0.1

FIG. 4. Combined SAXS and light scattering results.
Data are shifted vertically by an arbitrary factor to match
smoothly.
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FIG. 3. Development of light scattering profiles with

concurrent sedimentation and aggregation.

shown in Fig. 4, it is clear that self-similarity ex-
tends over two decades in k. To our knowledge,
this measurement represents the most definitive
confirmation of fractal behavior in either simulated
or laboratory clusters.

The fractal dimension was obtained from the
slope of the curves in Figs. 2 and 3. Since the
curves at the beginning of aggregation do not
demonstrate power-law behavior, no exponents
have been determined in this regime. As the clus-
ters grow, however, the power-law domain invades
the entire observable regime and the slope is then
legitimately interpreted as the fractal dimension D.
By averaging over ten measurements in this regime,
we find D = 2.12 + 0.05.

At very large k, there is a distinct crossover to a
second power-law regime with an exponent of —4
(see Fig. 4). This slope was originally calculated by
Porod for two-phase systems with sharp boun-
daries. '2 The crossover occurs at a value of k
equal to the nominal radius of gyration, a = 27 A,
of the colloidal feedstock as indicated in Fig. 4. The
fact that fractal behavior is observed up to the
crossover and the limiting slope of —4 indicate that
the monomers remain intact in the aggregate and
that the "width" of the arms of the cluster is just
the diameter of the monomers.

The fact that scattering occurs from a broad dis-
tribution of particle sizes could possibly lead to ar-
tifacts in the determination of D from the slope of

I(k). At stages of the aggregation where a substan-
tial amount of light is scattered by clusters with
RG & k ', Eq. (3) is not valid. However, as aggre-
gation proceeds, more and more material from the
low end of the particle size distribution is incor-
porated into the clusters and the largest grow to the
point where they sediment. Since this occurs
without change in D (see Fig. 3), we conclude that
polydispersity has not affected our result for D.

The fractal dimension of 2.12 observed here is
not consistent with either diffusion-limited aggrega-
tion (DLA)'4 for which D = 2.5 or cluster aggrega-
tion (CA) 5 6 for which D = 1.75. These two models
depend on kinetic processes whereby the monomers
and, in the case of CA, other clusters approach an
existing seed by a random-walk trajectory. In these
models, a fractal structure results because it is im-
probable for a random trajectory to penetrate the in-
terior of an existing cluster. A process that has not,
however, been included in the simulations is rear-
rangement with the clusters. This would lead to
denser structures with a higher Hausdorff dimen-
sion. Hence the more realistic of the two models
(CA), with the addition of rearrangment, could be
consistent with our experimental results.

We note that the measured value of D is quite
close to that of equilibrium structures called lattice
animals'4 (LA) for which D=2. Elsewhere'5 an
equilibrium model is developed for cluster struc-
ture, analogous to Flory's calculation'6 for linear
chains. It is suggested that cluster structure results
from a balance of entropic effects, which favor a
branched random-walk structure, and excluded-
volume forces, which favor cluster expansion. This
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model should apply when the repulsive part of the
electrostatic potential between particles is strong
enough to limit cluster-cluster contact and to
guarantee the self-avoiding structure of the LA. In
addition, the short-range attraction must be com-
parable to kT so equilibrium is realized. A range of
structures from dense clumps to DLA/CA clusters
is predicted for colloids depending on the balance of
long-range repulsive forces and short-range attrac-
tive forces. '5

This work was supported in part by the U. S.
Department of Energy under Contract No. DE-
AC04-76DPQ0789, and in part by the National Sci-
ence Foundation through Grants No. PCM82-
15769 and No. DMR82-10884.

tE. J. W. Verwey and J. T. G. Overbeek, Theory of the

Stability of Lyophobic Coiioids (Elsevier, Amsterdam,
1948).

2B. B. Mandelbrot, Fractats, Form, Chance, and Dimen-
sion (Freeman, San Francisco, 1977).

3T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47,
1400 (1981),and Phys. Rev. B 27, 5686 (1982).

4P. Meakin, Phys. Rev. A 27, 1495 (1983).
5P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).
6M. Kolb, R. Botet, and J. Jullien, Phys. Rev. Lett. 51,

1123 (1983).
S. A. Forrest and T. A. Witten, J. Phys. A 12, L109

(1979).
8D. A. Weitz and M. Oliveria, Phys. Rev. Lett. 52,

1433 (1984).
9S. K. Sinha, T. Frelthoft, and J. Kjems, to be pub-

lished.
&OH. R. Hailer, C. Destor, and D. S. Cannel, Rev. Sci.

Instrum. 54, 973 (1983).
&&K. D. Keefer, in "Better Ceramics Through Chemis-

try,
"Proceedings of the Materials Research Society 1984

Spring Meeting, edited by C. J. Brinker, D. R. Ulrich,
and D. E. Clark (Elsevier-North-Holland, New York, to
be published).

t2A. Guinier and G. Fournet, Small Angle Scattering of
X-Rays (Wiley, New York, 1955).

&3J. D. Martin and K. D. Keefer, to be published.
&4H. E. Stanley, P. J. Reynolds, S. Redner, and F. Fami-

ly, in Real Space Renormalization, edited by T. W,
Burkhardt and J. M. J. Van Leeuwen (Springer-Verlag,
Heidelberg, 1982).

&5D. W. Schaefer, J. E. Martin, and K. D. Keefer, to be
published.

t6P. J. Flory, Principles of Polymer Chemistry (Cornell
Univ. Press, Ithaca, New York, 1953).

2374




