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It is proved that the contribution of self-dual twisted gauge configurations (torons) to
the gluino condensate &Ag in N= 1 supersymmetric Yang-Mills theory remains finite in

the thermodynamic limit. Using the richer vacuum structure of the theory, defined in a
twisted box, the authors explain the constant value of the instanton contribution to the con-
densate &M. (x)M(y)&. The physical picture obtained is consistent with tr(-1)+ and the ef-
fectivee-Lagrangian

approach.

PACS numbers: 11.30.Rd, 11.30.Pb, 11.15.Kc

Effective Lagrangians' and the value of Tr(-I)»'
for N =1 supersymmetric Yang-Mills theory
strongly suggest a vacuum structure of N states
characterized by different values of the gluino
condensate (AA. ). Instantons are not sufficient in
order to generate such a condensate. This is
similar to QCD where instantons cannot break
the SU~(N») @SU»,(Nf) symmetry. If the gauge
group is SU(2), for example, an instanton can
give rise to condensates of the form ()tk(x)AA(y))
due to the existence of four gluino zero modes. '
The instanton size must be integrated over in
order to preserve supersymmetry. 4

The instanton contribution to the above Green's
function has been calculated recently' with the
peculiar result that as ~x-y~ —~ it does not fall
off but rather approaches a constant limit. The
puzzle is that WKB theory with instantons does
not provide us with a state

~
8) with nonzero

&()iu(x) i S& &Sian(y) i ()&,

where 0 denotes the vacuum angle.
In this Letter we will show that the special

topology of Yang-Mills theories allows the con-
struction of such states

~ S), and provides us with
a classical tunneling configuration which induces
condensates as Eq. (1) inWKB theory. The mech-

~ n, k) = J (d0,) ~

A;("') (x) &

where the integration runs over trivial gauge
transformations and A; "' (x) are zero action
gauge configurations

(2)

n&Z is the instanton number, and k is the num-
ber of times that Witten's operator T, ' has acted
on the trivial va.cuum ~A,. =O).

The explicit topological definition of k and n

can be given in terms of the corresponding Chern-

anism is similar to the one which we have re-
cently suggested for chiral symmetry breaking in
QCD '

We consider a finite four-dimensional box with
a, nontrivial Z(N) twist in the (1, 2) plane. This
box represents a unit of magnetic flux in the 3
direction. ' The boundary condition is the same
for gluons and gluinos in order to preserve super-
symmetry. In the temporal gauge A'=0, the
residual gauge transformations 0 (x) can be
topologically classified by &, and &, of SU(N)/
Z(N) which are given by Z and Z(N), respective-
ly.

The perturbative vacua in the box are therefore
given by
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Simons invariant:

K(x'=0)=—— d'x 2z TrA '" "&~ '""'-—.A '"')A (" ")A '" "=— k+n.1 2 N —1
16@2 un 84 v 8 gg 8

= Eexp
n, A

2e)()) e) . N —)
) ( ~) ()

where e is 't Hooft's electric flux in the 3 direc-
tion; e =1, . . . , ¹

Now with respect to states ! 0, e) the condensate
&AA(x)AA(y)) corresponding to the contribution of

gauge configurations with Pontryagin number 1
involves terms like

&~+1,k+1lu(x) Ink) &nk! XX(y)!n -1,k -1) (7)
which we can evaluate in WEB theory around self-
dual twisted gauge configurations with Pontryagin
number —,'. In general and for any SU(N) we will
have that the contribution of gauge configurations
with Pontryagin number 1 to condensates &AA(x, )

~ ~ )(A(x~)) (in the adjoint representation the num-
ber of zero modes is 2NP) involves terms like
II; -,&AA(x;)), where &XA) is the effect of gauge
configurations with Pontryagin number 1/N. Now

on states ! 6, e) the constant correlation function
&AA. (x)AA(y)) can, in principle, cluster as the
product of two AA. condensates. In order to see
if this is what really ha,ppens we will take the
thermodynamic limit of & He! AX(x)! Oe) for e = 0,
assuming that the theory lives in the confinement

!
phase.

Tunneling between the states ! n, k) and !n +1, k+1)
can be, produced by the self-dual gauge configura-
tions with Pontryagin number 1/N (torons). ' In
fact,

P=Z(x'=P) -SC(x'=0), (5)

with P the period in time.
The states in the physical Hilbert space are

given by

! 6), e)

The method of computation for fermionic ampli-
tudes in theories with Weyl fermions in real rep-
resentations of the gauge group is given by Vain-
shtein and Zakharov' and amounts simply to
squaring the determinant and then using a four-
component (Dirac) spinor formulation.

Consider now specifically SU(2). The toron
which induces the condensate in Eq. (7) is a con-
figuration in a four-dimensional box with the
twist n» = —n34 1 the rest vanishing. The tran-
sition functions are given by

nq(x) =exp(i(uo(„), x),/L)
1

with ~=2mo, and n»= —o.»=n34=-~3 4

the size of the box. The gauge configuration is

2 ~"(x) = -(u„~(x„-z„)/L'.
It is self-dual and its Pontryagin number is —,'.
a

&
is an arbitrary origin, leading to four transla-

tion zero modes. Note that with a fixed box size,
there are no dilation zero modes.

In a toron background there are two gluino zero
modes given by the supersymmetry transforma-
tions of the toron (in a Majorana representation),

(10)

a is the Grassman parameter of the transforma-
tion and

F ))„=-24) Q)) „/L,
Note that there are no superconformal zero modes
and that the number of fermionic zero modes is
in agreement with the Atiyah-Singer index theo-
rem.

We now embed F"' and y (the Weyl representa-
tion of ))) in a superfield W„(x~, 8) with x~„=x„
—i00&0 and compute

1T2

2g (p (12)

9, stands for the supersymmetric partner of the toron origin z. In Eq. (12) we have substituted the
gluino zero modes and integrated over the collective coordinates with the supersymmetric measure.
The power of p, L in the logarithm is a result of the four gluonic zero modes, two Weyl-gluino zero
modes, and the cancellation of nonzero modes between gluons and gluinos. We find

&~~&.„.—p'«pl4 '/a'()()1

which is renormalization-group invariant.
As in the case of QCD the thermodynamic limit of the chirality-breaking condensate can be easily
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taken with p&A, fixed and L —~, and it is finite.
We conclude that torons present us with exactly

the right characteristics needed to explain physi-
cally the results of the instanton computation.
An important ingredient is the contribution of
configurations of large size. Large instantons
must be taken into account in order to obtain a
supersymmetric result —a cutoff in the integra-
tion over the instanton size will lead to super-
symmetry breakdown in the effective Lagrangian.
On the other hand, the configuration which in-
duces (XA) must have a fixed scale —dilatation
symmetry would necessarily lead to too many
gluino zero modes. The toron has this property,
with the scale being the box size. However, as
the volume of the box increases and the toron
field strength decreases its effect does not dis-
appear, signaling the spontaneous nature of the
symmetry breakdown. '

Our computation is done in a state with non-
vanishing Z(N) magnetic flux. This state can
represent the vacuum only in a phase where mag-
netic flux does not cost energy, i.e. , confine-
ment (and perhaps Coulomb). Witten has pre-
sented arguments which suggest that supersym-
metric Yang-Mills theory confines. ' U a Higgs
phase does exist, we expect chiral symmetry to
be broken there also, for the following reason:

Since supersymmetry is unbroken, a massless
physical gluino state must be accompanied by a
massless gluonic state incompatible with a Higgs
phase which is characterized by a mass gap.
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