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Possible Breakdown of the Alexander-Orbach Rule at Low Dimensionalities
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Simple conditions are presented under which the fractal dimension of a random walk on an
aggregate, d„, is given by d„=a+1, where D is the aggregate's fractal dimension. These
conditions are argued (with one simple speculative assumption) to apply for D & 2, implying
a breakdown of the Alexander-Orbach rule d = 3D/2. Existing results for percolation clus-
ters, lattice animals, and diffusion-limited aggregates seem to favor our new rule.

PACS numbers: 64.60.Cn

Much recent interest has been centered on the
anomalous diffusion expected on fractal struc-
tures. ' s On such self-similar structures, the
anomalous diffusion coefficient scales with distance
as r s, and thus the average distance traveled by a
random walker ("the ant in the labyrinth" ) after t

s/a
time steps is r~ t, with d„=2+ 0.' The number
of sites S visited by the walker then scales as S~ rD,

where D is the fractal dimensionality of the aggre-
gate, i.e. , S(t)~ t~ 2, with d=2D/d„. 3 4 Much of
the recent activity in the field was stimulated by the
empirical observation of Alexander and Orbach
(AO)3 that the "superuniversal" value d = —', is rath-
er accurate for the infinite incipient cluster (IIC) at
the percolation threshold p„ for spatial dimensionali-
ties 2(d. Recently, Leyvraz and Stanley (LS)s
presented plausibility arguments that the AO rule
should hold exactly, at least for Cayley trees and
thus at high dimensionalities.

At p„ the fraction of sites on the IIC within a
volume L~ (of linear scale L) is L @",and hence
D = d —p/v. s The conductivity of the same
volume scales as L "I", and one has 6 = (p,
—p)/v. ' Combined with the AO rule, these rela-
tions yield

p, /v = —', (d ——,
' —P/3v).

Since p and p, cannot be negative, this relation
clearly breaks down for d & —', . Moreover, at
d = 1+e one expects that p, /v = e, in contradiction
to Eq. (1). Therefore, there must exist a lower crit-
ical dimensionality, di, below which Eq. (1) breaks
down (if it is correct at higher d). At d = 2, Eq. (1)
predicts that p, /v =91/96=0.948. Very recently,
very accurate independent studiess yielded p, /v
=0.973+0.005, 0.977+0.010, and 0.977+0.016,
apparently excluding the AO value even at d=2.
The present Letter presents an argument which
complements the LS argument for low d, and sug-
gests that the lower critical dimensionality dI is

about 2.1, where the fractal dimensionality
D = d —p/v is exactly equal to 2. Thus, the argu-
ment implies that the AO rule may not hold at
d=2 (where D= —,", & 2). Explicitly, our argu-
ment suggests that for D & 2, and for sufficiently
large systems, the AO rule d = —,

' crosses over to

d = 2D/d„= 2D/(2+ 0) = 2D/(D+ I),
i.e.,

d„=D+1,

(2)

(3)

or 0 = D —1. For the IIC at p, this implies that Eq.
(2) is replaced (for d & di=2. 1) by

(4)

Equation (4) was earlier conjectured by Straley, 9

and even earlier by Levinshtein, Shur, and Efros. '0

However, these authors used different arguments,
and predicted Eq. (4) for all d, which is clearly
wrong near six dimensions (where p, /v =6 and not
5). Equation (4) is clearly true at d= 1+a, and
the values of p, /v near 0.98 in Ref. 8 are probably
due to a slow crossover from 0.948 [Eq. (I)] to 1

[Eq. (4)l. Although the simulations may test dif-
ferent stages of the crossover, its slow nature may
still yield similar effective values.

Our rule (3) seems to be also preferred by other
types of fractals: Wilke et al. " find d„=2+ 0
=2.6+0.3 for lattice animals in d=2. Our rule
would predict d„=D+ 1=2.56, while the AO rule
yields d„=2.34. For animals, the borderline
dimensionality D = 2 occurs at di = 3, where Wilke
et al. found d„=3.4+0.4, the apparent deviation
from D+ 1 = 3D/2 = 3 probably being due to loga-
rithmic corrections (expected at di). Meakin and
Stanley'2 have recently looked on diffusion limited-
(8'itten Sanders) aggregat-es, and found d = 1.2
+0.1, not far from our d =2D/(D+1) =1.26.

For d = 3 their results agree better with the AO —', .
The LS argument concentrates on the number of
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visited sites, S(t), and is specific for the percolation
IIC at p, . LS create S (t) simultaneously with grow-
ing the underlying IIC: At each time step, the ant
may either move to one of the already visited sites,
or try to move into one of G growth sites never in-
vestigated before. In the latter case, this site may
either be unoccupied, whence G decreases by
b, G = —1 and the number of blocked sites, B, in-
creases by unity; or it is occupied, whence 5 G & 0
and the ant moves there. If there are no correla-
tions, thens G is dominated by random fluctuations:
Gce (S+B)' 2ce S' 2. The probability to increase S
per unit time is4 dS/dt~ G/S. Substitution of
G~ S' 2 immediately yields S~ t2 3, independent of
dimensionality d.

The above argument clearly breaks down at d = 1:
Then S(t) simply counts the number of visited
sites which form a straight segment, and hence
G(r) =—2, dS/dt~ 1/S, and S~ t' 2 instead of r~~3.

The slower increase of S(t) results from the fact
that the ant spends a long time revisiting sites, and
only rarely reaches (and then shifts) the boundary,
where b, G—= 0. A possible generalization of this
picture would assume that the set of visited sites is
mainly concentrated within a D-dimensional hyper-
sphere of radius R on the IIC, with a rather quick
decay outside. Nearly all the points within the
"hypersphere" have been visited, S~ RD, and the
number of unvisited growth sites is now proportion-
al to the number of cluster points on its surface (not
its perimeter), G~RD '~S' 'D. In general, G
might be contained in a layer of width AR. If the
surface of S(t) were rough, then one might have
b, R ~ R", with some new exponent x. '3 Near d = 1

our results show that x = 0. Numerical pictures on
diffusion-limited aggregates'2 at d = 2 also seem to
have x = 0. We therefore assume no surface
roughening, i.e., x=0, or hR =const. This as-
sumption will hopefully be checked in future nu-
merical simulations. With this assumption
dS/dr~ S ' D, giving S(t)~ tD D+' and thus Eqs.
(2) and (3). Comparing this result with 0
=

(JM,
—P)/v and D = d —P/v we get Eq. (4) .

Next we present a plausibility argument that the
result (2) should'4 hold for t » 1 and D & 2. At
short times, the growth of S(t) may be described
by the random changes in G, as given by LS. How-
ever, at low dimensionalities, there are many loops
on all length scales, and every site is visited many
times. Therefore, it is reasonable to conclude that
the set of visited sites gradually becomes compact,
covering most of the sites (on the infinite cluster)
within a linear scale R~ S'~ . (Random percolation
clusters below and at the threshold are not com-

pact, '5 but the set of visited sites is not random. In-
stead it might be similar to the "growing animals"
of the Eden process's which are compact. ) The
number of possible growth sites can therefore not
exceed the number of surface sites S' '~D. For
D & 2 this limit is smaller than the statistical S'~2,

and thus G will be dominated by the surface term:
G~StD ' D. For D & 2, on the other hand, the
statistical term wins: G~ S' 2 as in the LS theory.

Where, for d = 2, should the crossover between
the two rules occur as a function of t? Since then
S'~ and S' '~ differ by only a factor St 2s Ss/ts2

proportional to t'o~243 according to the AO rule,
only at extremely long times, i.e. , for vary large S,
does the "ant" notice the deviation from the LS
theory. Random percolation clusters at the thresh-
old of the square lattice's have a diameter near S'~D

which is 350 (the maximum width simulated by Za-

bolitzky) for S near 66550, corresponding to t =23
million steps; but still the ratio Ss 's2 is then less
than 1.4. Thus one may start to see deviations from
the LS and AO rules, as observed in Ref. 8, but one
does not yet see the asymptotic behavior for
Ss~'s2 && 1. Only the beginning of the crossover
was felt so far. Note, however, that the Monte Car-
lo simulations of Ref. 14 for the two-dimensional
number of visited sites gave S~ t06s+ao', in
good agreement with our asymptotic prediction
r ~ + ' = t '~' = t though still compatible
with t

In conclusion, we emphasize again that we have
not presented a rigorous proof of Eq. (3), nor
shown without doubt that the AO rule is wrong. In
the same spirit as LS, we presented plausibility ar-
guments favoring Eqs. (3) and (4) for D & 2. In
the spirit of AO, we propose Eq. (3) as an empirical
rule, to be checked by further analytical and numer-
ical studies.
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Note added. —After we submitted this paper we
found out that Eq. (2) was also derived by Alex-
ander. '6 However, the argument for the lower criti-
cal dimensionality D=2 appears here for the first
time.
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