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Richardson Number Criterion for the Nonlinear Stability
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With use of a method of Arnol'd, we derive the necessary and sufficient conditions for the
formal stability of a parallel shear flow in a three-dimensional stratified fluid. When the local
Richardson number defined with respect to density variations is everywhere greater than uni-

ty, the equilibrium is formally stable under nonlinear pertrubations. The essential physical
content of the nonlinear stability result is that the total energy acts as a "potential well" for
deformations of the fluid across constant density surfaces; this well is required to have defin-
ite curvature to assure stability under these deformations.

PACS numbers: 47.20.+m, 03.40.6c, 92.10.Dh

With use of a method of Arnol'd' and others,
we have investigated the nonlinear stability of two-
and three-dimensional incompressible flows of an
inviscid stratified fluid treated as a Hamiltonian sys-
tem. In this note, we report on the application of
this technique to the important case of a shear flow
with velocity profile U(z), and density profile p(z).
We do not present the full set of conditions for
nonlinear stability of this flow, but do exhibit the
necessary and sufficient conditions for the formal
stability of the flow. Formal stability means that a
certain functional of the flow fields is definite in

sign. Given formal stability, nonlinear stability re-
quires additional convexity estimates to be satisfied.
These do not alter the physical implications of the
conditions derived here.

The two-dimensional analysis" of the stratified
fluid equations linearized about a planar shear flow
U(z), p(z), shows that neutral stability (purely im-
aginary spectrum) occurs provided the Richardson
number is everywhere greater than 4. Here we

derive the analogous criterion for formal stability
for three-dimensional nonlinear deformations of

—u + ( u '7) u = —'7p —pgz,
Bt

along with

—p+ u Up=0 and V u =0,
Bt

(2)

in a domain on whose boundary the normal com-
ponent of the velocity u must vanish and the densi-
ty p must be constant. In (1) and (2), p is the pres-

the flow. Our criterion is that the local Richardson
number defined with respect to variations across
constant-density surfaces must be greater than 1.
This focuses attention on the realm between 4 and

1 for intensive theoretical and experimental investi-
gation.

We treat stability in the Boussinesq approxima-
tion4 for incompressible flow. See Ref. 2 for the
treatment of nonlinear stability for compressible
flows, and Ref. 3. for incompressible, stratified,
non-Boussinesq flows. We address solutions of the
momentum equation
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J d'x[ —,
' ~u~'+pgz]. (3)

Both p and the potential vorticity

q=(Vxu) Vp (4)

are conserved along fluid particle trajectories.

sure and g is the constant gravitational acceleration
in the —z direction. The constant reference density
multiplying the acceleration in (1) has been set
equal to unity.

Solutions to these equations conserve the energy

Thus, for an arbitrary function G (q, p),

A(u, p)

= Jtd'x[ —,
' ~u~'+pgz+G(q, p)+Zq] (5)

is conserved. The term Xq in (5) is separated to
cancel some boundary terms which arise below.
The role of the function G (q, p) is that of a famil-
iar Lagrange multiplier expressing the constraints
on the flow imposed by conservation of q and p.

We now examine the first variation of A (u, p)
and relate its critical points to stationary solutions
u, . The first variation is

hA (u„p,) = Jtd'x [Bu [u, —Gqq'7p, x'7q, ]+
+ (i + G, ) ~, J)ds~

Sp[gz+G (Vxu, ) '7Gq]]

{gp V x u, —'7p, x Vu, ], (6)

where G = tlG/Bp evaluated at q,p„etc., S is the
boundary surface of the domain of the flow, and n

is the outward unit normal vector on S.
5A in (6) vanishes at u„p,satisfying

From this we see that a sufficient condition for
formal stability is that the eigenvalues of the two-
by-two matrix in (12) are positive; namely,

ue Gqq+pe x +qe

gz + G = ('7 x u, ) '7 G~

(7)

8) and

Gqq &0, (13)

K(q„p,) =p, +p,gz+ —,
' iu, i', (10)

in the interior, and

A. = —
Gq (9)

on the boundary. Flows satisfying (7) and (8) can
be verified to be stationary solutions of (1) and (2).
Expression (7) implies the requirements u,

Vp, = u, '7q, = 0 for stationary flows; (8) is the
three-dimensional analog of Long's equation. 5

We use (7) and (8) to determine G(q„p,) in
terms of the Bernoulli function

Gqq Gpp Gqp ) 0. (14)

We can sharpen these sufficient conditions, howev-
er, by noting that divV 5u = 0, so there are only
two independent components of Su, which along
with bp allow us to cast the definiteness of 5 3 into
a linear three-by-three operator eigenvalue condi-
tion, whose eigenvalues must then be either a11 pos-
itive or all negative. This condition is made explicit
in the example we now discuss.

Our example is the parallel equilibrium flow

via

G(q, p ) = q Jt &
K(x, p ) +q y(p ), (11)

u, (x) = (u (yz), 0, 0),

p, (x) = p(z).

(15)

(16)

where y(p, ) is an arbitrary function of p, .
An equilibrium flow is said to be formally stable if

the second variation of A (u, p) at the critical point
u„p,is definite in sign. Formal stability implies
linearized stability since definiteness of 5 2 gives a
preserved norm for the linearized solutions. As
noted, nonlinear stability requires both formal sta-
bility and some convexity conditions on the func-
tion G (q, p). For the present case, we find

&'A (u„p,)
1

Gqq Gq, Sq= Jl d'x' IhuI'+ (hq, Sp) '. (12)
.G.p Gpp. ,~&„

u (y, z) =f (y) + U (z). (17)

The role of f (y) is to break the q, = 0 degeneracy
of the two-dimensional f=0 flow, which is the

This is a standard configuration and application of
the Arnol'd method to it provides insight into the
value of the technique. The validity of the linear-
ized results on this flow have been examined in
laboratory and geophysical situations. Our non-
linear result will thus provide impetus for further
experimental study of these important flows. We
separate the y and z dependences in u(y, z) into a
small, slowly varying y dependence plus a general z
dependence U (z). Thus, we write
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conventional setup. The physical situation we wish
to describe is a shear flow U(z) with a smooth,
small f(y) imposed upon it to give the three-
dimensionality needed for q, & 0. We wish to
parametrize f(y) by a velocity scale, fo, which is
much less than U(z), and by a length scale L which
is large compared to any other lengths in the prob-
lem. We choose

f (y) =fo(y/L)', fo « U( ); (18)

and restrict the domain of y to be iyi « L. In
what follows, we expand all quantities in L ', cap-
turing the essence of the stability problem in the
leading orders of L which are retained for L very
large.

From the Bernoulli function, (10), we find
(dropping the subscript e henceforth)

G(q, p)

= —[p + pgz + —' U (z)] + —'G q + 0(q ) (19)

with

Gqq
Pyy pz

L'U( ) f(y)
fop,' U (z)

(20)

and we drop the last term commensurate with our
assumptions on f(y). Gqq is now a function of z
(or p) alone. q in our flow is

q = (fo/L) (y/L) ( —p, ). (21)

Since q is small for iy i « L, the neglect of
higher-order terms in q, wherever they occur, is an
excellent approximation.

Now we choose the two independent components
of 5u in (12) from the vertical velocity
v3(x, t) =5u z and the vorticity co3(x t)
= ('7 x5u) z. This choice is motivated by the ob-
servation that the only essential dependence on the
equilibrium flow is on the vertical coordinate z. To
leading order in L ' a calculation shows that
52& (u„p,) is given by

523 (u„p,) = Jrd x(v3 GU3, 5p)
1 + Pz Gqq Pz +zGqq~y'7~

qq ~ ~~ ~ qq ~. . P5~.

(22)

+5 and V =9 i+t)z . Precise
meaning to (V2i) ' is given by imposing periodic
boundary conditions in x and y for each of v3 Q)3,
and 5p. A term f~8,5P has been neglected relative
to U, 6~5P, which is retained. This ordering means
our choice of L must be large enough to overcome
any very large vertical wave numbers in, bp. The ar-
bitrary function y(p, ) in (11) is set to zero.

For formal stability, we demand that 5 3 be of
definite sign for all independent variations in
(v3 M3, 5p) space. That sign must be positive, as
we see by looking in the direction (v3, 0, 0). Then
by looking in the direction (0, cu3, 5p) we learn that
the necessary and sufficient conditions for formal
stability are that the two-by-two submatrix operator
in (22) have only positive eigenvalues. This re-
quirement is most easily expressed by Fourier
transforming in x and y to wave numbers k] and k2.
The two-by-two submatrix becomes algebraic, and
positivity of its eigenvalues occurs if and only if

and

pg Gqq El /ttyy & Oy

k2 Uz GqqG & max
(I ],I, ) ]+kgb p, G

=0.

(25)

(26)

The first of these is the usual Rayleigh criterion for
stability of shear flows in y. Its presence here is ex-
pected since we have no stratification in the hor-
izontal direction. Condition (26) is the desired
Richardson-number criterion. Note that

G„=—g Bz/Bp —8'[—,
' U'(z) ]/Bp'. (27)

When (Uz) is positive, we may define the gen-
eralization of the usual Richardson number to be

with ki = ki + k2.
Since we allow arbitrary variations of v3, m3, and

Sp, each of ki and k2 can be as large as we like.
This means that we must have

1/k i +p, Gqq & 0, (23)
N„;() = N( )'/[p, '6'[ —,

' U'( ) 1/Bp'], (28)

Gpp[1+ki P~Gqq]+k2U Gqq & 0
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(24)
with N (z) = —gBP/Bz the Brunt-V'ais'ala frequency
in Boussinesq approximation. [NR; defined by (28)
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agrees locally with the standard gradient definition,
if one uses the linearization of U and p (e.g. , Ref.
3)]. The necessary and sufficient condition for for-
mal stability then becomes

Ntt;(z) & 1 (29)

everwhere in the flow. This is our central result.
In addition, there are situations where p, positive

(a statically unstable configuration) may be stabi-
lized by the shear flow. To exhibit this stabiliza-
tion, we assume p, & 0 and define the "inverse
Richardson number"

( ) = (t)'[ —,
' U'( ) ]/Bp'] ( —

p /g). (30)

When p, & 0, that is for statically stable stratifica-
tion, all flows with a(z) & 1 are formally stable.
When p, & 0, that is for statically unstable stratifica
tion, all flows with a(z) & 1 are formally stable.
The first case is usually understood by saying that
the kinetic energy acquired by a parcel of fluid
crossing density surfaces is not sufficient to over-
come the potential energy required to move the
parcel. The second case is less familiar and is only
possible if second derivatives of U are relatively
large. In this case, the potential energy that would
be gained by a fluid parcel in crossing density sur-
faces is not sufficient to overcome kinetic energy
lost in the same traverse.

The essence of our argument in this note is that
the negative of the Bernoulli function (10) acts as a
"potential well" for stratified flow. This is seen in
(19) where G is, for this heuristic discussion,
—(p + pgz + —,

~
u

~
). Our requirement that

Gpp ) 0 tells us that this potential well has positive
curvature for crossing density surfaces, when the

flow is formally stable. This note provides detailed
demonstration of this notion, which itself was dis-
cussed as long ago as 1931 by Prandtl. 7
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