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SU(3) Heavy-Quark Potential with High Statistics
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The results of a high-statistics calculation of the SU(3) heavy-quark potential are present-
ed. The validity of scaling is tested quantitatively. New results are given for the string ten-

sion and the strength of the long-range Coulomb term in the potential.

V(R) =s(R/g)/R,

where s is a dimensionless scaling function, and
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For the quark potential the string tension, K, sets
the physical length scale, and it is natural to adjust
the constant c so that gJK —1. Formulas (I) and
(2) become exact in the asymptotic limit, (/n —oo

(or P —~). It is clearly a vital question to know
how fine grained the lattice must be, or equivalent-
ly how large a P is needed, before (I) and (2) be-
come good approximations. In our work, the answer
is P~6.0. Our smallest P values are P=5.8, 6.0,
6.1, and 6.2. The points with P ~ 6.0 are consistent
with (1) and (2), but inclusion of P= 5.8 leads to
clear violations of scaling. At P=6.0, ( —4u (see
the discussion of K below), thus u —I/4 @K is the
coarsest lattice we can tolerate. Once in the scaling
region, we must also control finite volume effects,
which depend on (/L, where L is the shortest lattice
dimension. From (—4n at P= 6.0, we have, as-
suming scaling, $ —6.5n at P = 6.4, and so to keep
L approximately twice ( or greater, we imposed a

maximum of 6.4 on P. The choice of a safety factor

PACS numbers: 12.40.Qq, 11.15.Ha, 12.35.Ht

We have recently completed a series of high-
statistics Monte Carlo evaluations of large, rec-
tangular Wilson loops in SU(3) lattice gauge theory.
By use of the standard one-plaquette action, all

planar loops up to 6 & 9 in size were measured' on a

12'x 16 lattice, at a set of P values (P = 6/g-') rang-

ing from 5.8 to 7.6. A full discussion of the results
will be presented elsewhere. In this paper, we ad-

dress the large distance, nonperturbative physics in

the heavy-quark potential, and give quantitative
results on the validity of scaling. -

In the continuum limit, the heavy-quark potential
can be written

of 2 between L and ( is somewhat arbitrary. A

more specific requirement is that we want to avoid
crossing the deconfining transition. We arrived at a
similar upper bound on P by roughly estimating the
location of this transition. Consider first the finite
temperature configuration, L'x T, T (( L. From
a recent calculation, ' we have that the lattice is in

the confined phase for T & (66Ao) '. If we make
the plausible assumption that for an L'x T lattice
with T ) L, the shorter dimension L should now

play the role of inverse "temperature, " then to be
in the confined phase we estimate L & (66AO)
which translates into P & 6.55 for our 12-'x16 lat-

tice.
For the interquark separation, R, the formal con-

tinuum limit is R )) o. , and explicit calculations
must be done to see if continuum behavior can be
found accurately at finite R/n Ther. e is good evi-
dence from the study of correlation functions in

spin systems that once the coupling is in the scaling
region, the asymptotic formulas valid for R )) o.

also become very accurate for finite R/u & 1.' In

our work, we can measure the heavy-quark poten-
tial for R/n = I —6. Consistent with the spin system
results, we find that continuum behavior is reached
rapidly as R/n increases, and we need eliminate

only the smallest value, R/u= I (we have checked
that the X of our fits to the potential increases
unacceptably if R/n= I is included). To summa-
rize, we have imposed two conditions, 6.0 ~ p
~6.4 and 2~R/n~6. Meeting them hopefully
allows a reliable calculation on our 12'X16 lattice,
in which the worst effects of the finite lattice grid
and volume have been eliminated.

As discussed above, the correlation length,
changes only by a factor of approximately 1.5
between P= 6.0 and 6.4. This means that in order
to set quantitative limits on scaling, we need to
gather very accurate data for Wilson loops. This
was partially accomplished by making long runs. At
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each p value (p=6.0, 6. 1, 6.2, and 6.4), the lattice
was swept at least 700 times. The link update algo-
rithm was a mild variation on that of Cabbibo and
Marinari, in which all three SU(2) subgroups of
SU(3) were used. At least 200 sweeps were
dropped from the beginning of each run to insure
equilibrium. Much more important than the length
of the runs in reducing statistical errors was the way
in which the Wilson loop data were gathered. We
used the variance reduction method applied recent-
ly by Parisi, Petronzio, and Rapuano' in a calcula-
tion of thermal Wilson loops. Described in purely
operational terms, we proceeded as follows. Mea-
surements of Wilson loops were made every ten
sweeps of the lat tice. In the measuremen t of
W(R, T) for R ~ 2u, the links in the T direction of
the loop were integrated out. ' In practice, this was
done by updating these links an additional fifteen
times, holding the surrounding links fixed. The
value of the loop was then calculated in the usual
manner, except that for the T direction, each link
matrix, U, was replaced by its average over the fif-
teen additional updates. As discussed in Ref. 7,
what is going on is the replacement of a fluctuating
observable by another with the same expected
value, but with smaller variance. Using this meth-
od, we observed a reduction in statistical error by a
factor of approximately 10 for a typical large loop
like 4X8, giving an effective gain in computational
power of 100. Similar variance reduction methods
have recently been applied for the SU(2) case. s

From the Wilson loop values, we proceed to con-
struct the potential in a manner similar to previous
calculations. ' First, lattice potentials, V, (R ),
were determined at each p by fitting In[ W(R, T)]
to a straight line in T for T )R. As seen in Fig. 1,
there is very good evidence that IV(T, R) behaves
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FIG. 1. —In( W(R, T)) vs T/u for P=6.0.

exponentially in T for T ) R, which means that the
heavy —quark-antiquark system is in its ground
state. This is our main reason for favoring rec-
tangular loops over those which wrap around the
lattice in determining the potential. With rectangu-
lar loops, the exponential behavior in T is explicitly
verified, and then several values of T feed into the
determination of VI(R) at a given R value. This al-
lows much more accurate results to be obtained.

With our results for the lattice potentials in hand,
we are ready to address the question of scaling. In
the continuum limit, any physical quantity with
dimensions of mass becomes a multiple of Ao. The
dominant dependence on p of any such quantity re-
sides in the exponential factor of Eq. (2). To
parametrize possible deviations from continuum
scaling, we define a family of Ao parameters by

' 51/121

A (f) I 87rp 47r pf (3)
A 33 33

exp—

and our goal will be to see what limits can be set on
the parameter f. The power behavior in p multiply-
ing the exponential in (3) is purely decorative at
this point, and plays a negligible numerical role in
our analysis of scaling. We carry it along simply be-
cause for f=1.0, Ap(f) reduces to the universally
used formula, and our results can be compared easi-
ly with other calculations.

The potentials VI(R) contain an explicitly u-
dependent self-energy, Vo, which must be removed
before the continuum potential, V, can be found.
This was done by the procedure described in Refs. 9
and 10, to which the reader is referred for details.
Here„we just mention that in the step involving the
force, the points R =2o. and 3n were used. The
correlation length was defined by (= c/Ap(f). The
constant c is arbitrary, but to maintain (JE —I,
we chose c+0.011, which was our previous value
for A p/QE. 'p The self-energy subtraction pro-
cedure produces a set of (V values for any $; all
that is needed is a definite value for $/u at each
value of p. If an incorrect dependence of g/u on p
has been assumed, the plot of ( V vs x = R/g will
show scatter and fail to map out a smooth curve.
This can be seen by eye if a value of f far from 1.0
is used, but for quantitative results one must fit to a
specific analytic form for g V to define "smooth-
ness. " Since we have taken care to stay in the con-
fined region, and have eliminated the shortest dis-
tance points, a simple linear-plus-Coulomb form is
justified, where the Coulomb term is associated
with long-range nonpertrubative physics, not gluon
exchange. For each value of the parameter f, we
performed a least-squares fit of g V to the three-
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parameter form

( V = —( n/x) + Ax + B. (4)

o. = 0.25 + 0.02,

Ao/JK= (94+03) x10 (5)

We then searched in f to find the value, fo, which

gave an overall minimum in X The uncertainty in

fz was determined by using the criterion" that

fa fp + Bf should cause a unit increase in X -.
The result is that fo=1.05+0.08. The total X' at

fo=1.05 is 13.8, which is quite acceptable for a fit
with 17 degrees of freedom. Note that the perfect
continuum scaling value of' f = 1.0 is also totally ac-
ceptable statistically. Large deviations from j'= 1.0
cause X to increase to very improbable values.
With 90% confidence, values of f greater than 1.32
or less than 0.89 are ruled out.

The values of o. and A found in the fits vary only
slightly as f varies over the range /'I&+ 5f, and we

quote here only the f =1.0 results. At f =1.0, we

get o = 0.25 + 0.01 and 3 = 1.38 + 0.04, which

translates, with K =A/$2, into AOQK = (9.4
+0.1) x10 3. The errors quoted so far are purely

statistical, coming from the fit to the data with

6.0 ~ p ~ 6.4 and 2 ~ R/n ~ 6. There is additional
uncertainty in n and Ao/ JK, caused by some sensi-
tivity to the exact choice of points in the fits. For
example, one can be ultraconservative and elim-
inate p= 6.4, or more daring and include p = 6.8,
etc. We attempt to take account of this in our best
estimates of the final results for f =1.0:'

In Fig. 2, we show our results for V/QK vs K'~'R
for the present calculation, along with the linear-
plus-Coulomb fit ~ In Fig. 3, we show all of our data
for p=6.0. Note that points with p~6.4 continue
to map out a smooth curve. In contrast, if plotted,
the p=5.8 points with R/n ) 3 would be high by
several standard deviations. Thus the distortion of
scaling due to the lattice spacing growing too large
seems more violent than effects associated with fin-
ite lattice volume.

Our value of n is within estimated errors of n./12,
the value expected from transverse flux tube vibra-
tions. ' ' Although we are working at K' R —1,
rather than K' -R )) 1, we find this highly sugges-
tive. We plan to map out the chromoelectric flux
distribution represented by our potential in future
work.

With regard to the string tension, our result (5)
for Ao/QK is quite close to that obtained in another
recent high-statistics calculation, ' which gave
Aa/ JK =9.6x10 . It is also consistent with our
previous calculation' which, on an 8 &&12 lattice,
gave Ao/QK = (11 + 3) x 10 . At p= 6.0, (5)
gives I JK =4.01n. This was the basis of our ear-
lier remark that ( —4n at p = 6.0.

We can draw two important conclusions from this
work. First, with sufficiently accurate data, quanti-
tative tests can be carried out on the validity of scal-
ing. Second, for the case of SU(3) with the one-
plaquette action, there is good evidence for scaling
according to (1) and (2), once g/n & 4. The slight

FIG. 2. Linear plusCoulomb fit to the data with

6.0~ p ~ 6.4.
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FIG. 3. The quark potential for all the data with

P ~ 6.0.
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deviation from f= 1.0 found in our best fit was

caused mainly by the data at P = 6.4. We are
currently planning to explore the region near

P = 6.4 in detail, and in particular, pin down the lo-
cation of the deconfining transition.

We would like to thank G. C. Fox for his
unwavering support and R. P. Feynman and R.
Gupta for helpful discussions. This work is sup-
ported in part by the U. S. Department of Energy
under Contract No. DE-AC03-81-ER40050 and in

part by the National Science Foundation under
Grant No. NSF-PHY-81-09494.

'E. Brooks, III, er al. , preceding Letter [Phys. Rev.
Lett. 52, 2324 (1984)].

Throughout this paper the term scaling implies both
(1) and (2). This is called asymptotic scaling in many re-
cen t pre pr in ts.

F. Karsch and R. Petronzio, CERN Report No. Ref.
TH.3797-CERN, 1983 (to be published).

4E. Kovacs [Phys. Lett. 118B, 125 (1982)] has shown,
in SU(2), that for T = L the deconfining transition is lo-

cated at the same value of T as it is for T &( L. See,

also, R. Gupta and A. Patel, Phys. Lett. 124B, 94 (1983).
5M. E. Fisher and R. J. Burford, Phys. Rev. 156, 583

(1967).
6N. Cabbibo and E. Marinari, Phys. Lett. 119B, 387

(1982).
G. Parisi, R. Petronzio, and F. Rapuano, Phys. Lett.

128B, 418 (1983).
F. Karsch and C. B. Lang, CERN Report No. Ref.

TH.3789-CERN, 1983 (to be published).
J. D. Stack, Phys. Rev. D 27, 412 (1983).

' J. D. Stack, Phys. Rev. D 29, 1213 (1984).
''See, for example, the article by R. A. Amdt and

M. H. Macgregor, in WIcleaI Ph&sics, Methods in Com-
putational Physics: Advances in Research and Applica-
tions, Vol. 6, ed i ted by B. A lder and S. Fern bach
(Academic, New York, 1966).

' M. Luscher, K. Symanzik, and P. Weisz, Nucl. Phys.
B 173, 365 (1980); J. D. Stack and M. Stone, Phys Lett. .
100B, 476 (1981).

' In three-dimensional SU(2), a value very close to
vr/24 (the lower-dimensional analog of rr/12) for c~ has
recently been obtained by J. Ambjorn, P. Oleson, ancl C.
Peterson, Neils Bohr Institute Report No. NBI-HE-84-
05, 1984 (to be published).

'4D. D. Barkai, K. J. M. Moriarty, and C. Rebbi,
Brookhaven National Laboratory Report No. BNL-
34462, 1984 (to be published); see, also, references
therein for other recent string tension calculations.

2331


