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We report on a pure gauge SU(3) lattice theory computation performed on an array of 64
microprocessors interconnected as a 2° hypercube and having the cumulative power of ap-
proximately eight VAX11/780's. The availability of a substantial number of computer cy-
cles, coupled with an improvement in the algorithm, made possible a high-statistics deter-
mination of the heavy-quark potential on a 12¥x 16 lattice.

PACS numbers: 11.15.Ha, 02.70.+d, 12.35.Ht, 12.40.Qq

The numerical approach to quantum field
theories via Monte Carlo lattice calculations appears
to hold much promise for the eventual solution of
these theories.! However, before truly accurate,
quantitative results can be achieved, much faster
and larger (i.e., more memory) computers will be
needed. Factors contributing to the intense compu-
tational requirements include the large number of
degrees of freedom for even a seemingly modest
four-dimensional lattice; the statistical nature of the
calculation, leading to slow convergence of physical
observables; the need to estimate exponentially
small, long-distance correlations; and the critical
slowing down of the Monte Carlo procedure as the
continuum limit is approached.

Fundamental limits in very-large-scale-integra-
tion technologies suggest that significant increases
in computer performance will come not from push-
ing current designs yet further, but instead from
new computer architectures utilizing many comput-
ers executing in parallel.? A simple design for such
a computer is a ‘‘homogeneous machine’™: a regu-
lar array of (independent) processors with a small
number of interconnections per processor.’ Such a
machine has been built at Caltech and consists of 64
processors (based on the Intel 8086-8087) wired as
a 2% hypercube, with a cumulative power of approx-
imately eight VAX11/780’s (or up to 3.2 million
floating point operations per second) and a total
storage capacity of 8 Mbyte. A hypercube intercon-
nection scheme has advantages over two- or three-
dimensional mesh connections, though it does con-
tain these. The current 2 machine is isomorphic to
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a 4xX4x4 cube with periodic faces, but it is not re-
stricted to this; for example, it can also be used as
4x4x2x2 or 8x8 meshes (ignoring some com-
munication channels in the latter case), or a 64-
processor ring. This structure allows flexibility in
the choice of decomposition of the application onto
the computer. Beyond meshes, the hypercube is
natural for the important fast Fourier transform al-
gorithm, and also, the maximum distance between
processors grows only logarithmically with the total
number of processors, allowing long-distance com-
munications to proceed rapidly.*

This 64-processor machine should be regarded as
an experimental proving ground towards the con-
struction of much larger and faster multicomputer
systems. Other physics-related projects include the
successful Ising-model processor built by Pearson,
Richardson, and Toussaint,® while Christ and Ter-
rano are building a two-dimensional mesh computer
applicable to lattice gauge theories and capable of
much higher performance.® We are also presently
designing and building more advanced systems.
Calculations with a prototype four-node machine
and further details of our techniques have been
given elsewhere.’

In this Letter, we discuss the application of the
64-node machine to SU(3) pure gauge theory, for
which the heavy-quark potential has been calculat-
ed. Because of the large number of computational
cycles available (~2500h) and also the improve-
ment in the method of obtaining the potential, we
have achieved a high-statistics, self-consistent
(scales for sufficiently small lattice spacing) result.
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Here, issues related to the novel computer and al-
gorithm are discussed; a detailed interpretation of
the results is given in a companion Letter.?

The calculation was performed on a 12*x 16 lat-
tice and was decomposed onto the computer in
three dimensions, i.e., each processor contained a
3¥x16 sublattice. The action employed was the
simple plaquette or Wilson form. The update algo-
rithm used was a variation of the subgroup-heat-
bath method,’ in which a heat bath in all three
SU(2) subgroups of SU(3) is performed before
moving on to the next link. To save on storage,
only two columns of a SU(3) link matrix were actu-
ally stored, with the third reconstructed when
necessary. This turns out not only to save on
memory, but also to speed up the calculation, since
when a matrix product is computed, the third
column need not be found. To further reduce
memory requirements, the matrices were stored in
a fixed-point, sixteen-bit format. This is possible
since the elements of the matrix (real and ima-
ginary parts) vary between -1 and 1. In comparison
with higher accuracy representations, this was
found to have little effect for the multiplication of
two such stored matrices. However, as the Monte
Carlo calculation ran, it was observed that the ma-
trices drifted off the SU(3) group manifold rapidly
and this effect was corrected by projecting back
onto the manifold after every two sweeps.

Programming a four-dimensional gauge theory on
a mesh-connected computer can be a horrendous
task if not approached correctly. The fundamental
quantities, Wilson loops of arbitrary shape, can in-
tersect many processors, and explicitly keeping
track of all necessary interprocessor communica-
tions is difficult. However, a simple, recursive al-
gorithm was constructed which takes a list of
numbers as input (each number giving the direction
of one step in the loop) and literally travels around
the loop. This is easy to implement on the multi-
computer with the one restriction that the same
shape loop is calculated by all processors simultane-
ously (which is the typical situation).” With this
method, it was straightforward to implement the
update of the lattice and the measurement of loops
of arbitrary shape and size.

The efficiency of this algorithm has been found
to be 0.97 (during update) and 0.95 (during loop
measurement). The efficiency is the fraction of the
time that the computer is doing useful work, as op-
posed to interprocessor communication. Another
way of putting it is in terms of speedup: During up-
date, the 64-processor machine runs 0.97 x 64 =62
times faster than a single processor. Such high effi-

ciencies are not due to the interaction being short
ranged—in fact, most of the links in each 33x 16
sublattice are communicated at least once during an
update sweep. Instead, they are a result of the large
amount of computation done for each matrix
passed. To communicate the matrix requires ex-
changing three packets of 64 bits, each taking 160
us, while use of that information in a matrix multi-
plication (the typical operation) consists of 175
floating point operations, each taking effectively 30
us. This gives, as an estimate of the efficiency,
355 =0.92. The actual efficiencies are higher be-
cause every multiplied matrix does not need to be
communicated and, during update, part of the time
is spent in the heat bath application, requiring no
communication. The conclusion is that we are not
limited to short-ranged interactions; more nonlocal
actions (such as the very important renormaliza-
tion-group improved versions) could be used with
little, if any, degradation in efficiency.

A quantity fundamental to the understanding of
quantum chromodynamics is the heavy-quark po-
tential. With use of the technique developed by
Stack,!? the potential is found by computing R X T
Wilson loops and extracting the potential, V, from

W(R,T) ~e " RIT (1)

for sufficiently large 7. Our calculation of W (R, T)
was significantly improved by using an idea of Pa-
risi, Petronzio, and Rapuano.!' This method con-
sists of completely integrating out those links to
which the loop is most sensitive. Figure 1 illus-
trates the method for W (R,T). If one denotes by
U the integral,

U= [au vetsv, )

with the links surrounding U held fixed, then (for
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¢
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FIG. 1. The Wilson loop, W (R,T). The labeling of
the path by Cy, ..., Cyrefers to Eq. (3).
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the simple plaquette action)

(WRD)=(ITIvITeIv-'TIu=Y. 3

C, G, C,y

for R = 2. Though the integral in (2) can be found
analytically,'? it is very complex, and it is, perhaps,
more practical to estimate the integral by simply up-
dating the link in question many times:
N
U=N"'3U, (4)
i=1
with the index, /, labeling the updates. Despite the
fact that this is only an estimate for (2), no sys-
tematic error is introduced by using this expression
for U. This can be seen by inserting (4) into (3)
and expanding out the products of sums over up-
dates. Each term then corresponds to an update of
the lattice which satisfies detailed balance.

Choosing the N of Eq. (3) to be 15, we find that
the improved method reduces the statistical error
by approximately a factor of 10, corresponding to
an effective gain in computation time of 100. This
coupled with the relatively large amount of comput-
er time has meant that even large loops can be
found reliably, e.g., the 6x8 loop at B(=6/g?)
= 6.0 is measured with a 15% accuracy.

The heavy-quark potential extracted from these
loop values is shown in Fig. 2. Also shown is a
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FIG. 2. The heavy-quark potential. Defining the
correlation length, &, as £€=0.011/A,, the figure shows
V¢ vs the distance x = R/¢. Where error bars are not
drawn, they are smaller than the symbol size.

2326

(linear plus Coulomb) fit to the large-distance re-
gion. We see clearly both the linear (confining)
behavior at large distances and the perturbative
(Coulomb) behavior at shorter distances. Detailed
analysis of this result, such as discussion of the fits
and sensitivity to the lattice spacing, will be given in
the companion Letter.?

As for further applications of the 64-node
machine to lattice gauge theories, we are currently
using an extension of the methods mentioned here
to improve the statistics in a SU(3) glueball spec-
trum calculation and are preparing renormali-
zation-group [for SU(2)] and dynamical-quark [for
SU(3)] applications. A two-dimensional Coulomb
gas calculation, with the use of an identical machine
with eight nodes, has recently been completed.'
Projects in other scientific fields which are being
implemented on the 64-node machine include early
universe evolution, galactic dynamics, two-di-
mensional melting, nonlinear wave propagation for
geophysics, chemical reaction dynamics, granular
flow, and electronic circuit simulation.*

We have recently learned of similar methods [to
Eq. (3)] which are being applied to the SU(2)
case.'*

We would like to thank the Department of Ener-
gy, the Defense Advanced Research Projects Agen-
cy, the Intel Corporation, the Digital Equipment
Corporation, the Ralph M. Parsons Foundation,
and the System Development Foundation for much
valuable support. This work was supported in part
by the U. S. Department of Energy under Agree-
ments No. DE-ACO03-81-ER40050 and DE-ATO03-
83-ER13118, and in part by the National Science
Foundation under Grant No. NSF-PHY-81-09494.

(a)Present address: L-71, Lawrence Livermore Nation-
al Laboratory, Box 808, Livermore, Calif. 94550.

(®)Present address: Bell Laboratories, 600 Mountain
Ave., Murray Hill, N.J. 07974,

IM. Creutz, L. Jacobs, and C. Rebbi, Phys. Rep. 95C,
201 (1983); J. Kogut, Rev. Mod. Phys. 55, 775 (1983);
K. Wilson, Cornell University Report No. CLNS/80/442,
1980 (unpublished).

2C. Seitz and J. Matisoo, Phys. Today, 37 (5), 38
(1984).

3C. Seitz, Journal of VLSI and Computer Systems (to
be published).

4F. Fox and S. Otto, Phys. Today 37, (5), 50 (1984).

5R. Pearson, J. Richardson, and D. Toussaint, Institute
of Theoretical Physics, University of California, Santa
Barbara, Report No. NSF-ITP-81-139, 1981 (unpub-
lished).

6N. Christ and A. Terrano, Columbia University Re-



VOLUME 52, NUMBER 26

PHYSICAL REVIEW LETTERS

25 JUNE 1984

port No. CU-TP-261, 1983 (to be published).

E. Brooks, IIl, eral., Nucl. Phys. B220 [FS8], 383
(1983).

8S. Otto and J. Stack, California Institute of Technolo-
gy, Report No. CALT-68-1113, 1984 (to be published).

9N. Cabibbo and E. Marinari, Phys.Lett. 119B, 387
(1982).

10J. Stack, Phys. Rev. D 27, 412 (1983), and 29, 1213
(1984); E. Kovacs, Phys. Rev. D 25, 3312 (1982).

1G. Parisi, R. Petronzio, and F. Rapuano, Phys. Lett.
128B, 418 (1983).

12R . Brower, P. Rossi, and C.-1 Tan, Nucl. Phys. B190
[FS3]. 699 (1981).

BF. Fucito and S. Solomon, California Institute of
Technology Report No. CALT-68-1114, 1984 (1o be pub-
lished).

14F. Karsch and C. Lang, CERN Report No. TH.3789-
CERN, 1983 (to be published).

2327



