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A general method for optimizing real-space renormalization-group transformations is

presented. It is applicable to both spin systems and lattice gauge theories, with use of Monte
Carlo computer simulations. It provides substantial improvement in the convergence of criti-
cal exponents for the d = 3 Ising model.
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Although real-space renormalization-group (RG)
methods have contributed much to our understand-
ing of phase transitions, their use has been limited
by difficulties arising from the many parameters
needed to describe the effective renormalized Ham-
iltonian completely. When truncation approxima-
tions are used, the neglect of all but a small number
of coupling constants leads to uncertainties in the
validity of the results. By combining the real-space
renormalization-group formalism with Monte Carlo
(MC) simulations, a relatively large number of
operators can be used and assumptions concerning
the renormalized couplings can be tested directly. 2 4

However, the convergence of the method and the
required lattice size for the MC simulations depend
on the number and range of the renormalized cou-
plings.

Similarly, in MC studies of lattice gauge theories,
the determination of the renormalization trajectory
is greatly complicated by the generation of many ef-
fective coupling constants. ' '

In this Letter, I should like to present what I be-
lieve to be the first general method for optimizing
real-space RG transformations to reduce, or even
eliminate, these problems.

In earlier work, Witten and Prentis showed that
certain values of the parameters in a truncation ap-
proximation gave particularly good results for the
critical exponents. In addition, they made the im-
portant observation that these values also produced
especially small renormalized couplings beyond the
nearest neighbors. However, they did not give a
general method for optimization, but rather tried to
"find accurate transformations empirically, and

then look for criteria which characterize them. "
The first step in my procedure is to construct an

RG transformation for which the renormalized
Hamiltonian has specified properties. As a demon-
stration, I have explicitly constructed a local RG
transformation that maps the nearest-neighbor Ising
model at its critical point onto itself.

The nearest-neighbor Ising model is defined as
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for which the renormalized spin on site j takes on
the value o-,' with probability

T, (o,', o-) = Y,-'exp[a-, 'X p R, (o-)] (3)

and the normalization factor is

Y, =cosh[ X„p R, (a.)]. (4)

The dependence of the renormalized spins on the
local configurations of the original spins is con-
tained in the functions R J(a.). For example, if
Ro, (o-) is the sum of spins in the block labeled j,
the associated parameter is infinite, and there are
no other contributions, then we have the usual ma-

jority rule. '

If MCRG simulations of a nearest-neighbor Ising
model at its critical point are carried out with use of
an RG transformation of this general form, and the
renormalized Hamiltonian coincides with the near-
est-neighbor critical point, the renormalized corre-
lation functions will be the same as those of a
nearest-neighbor model on the same size lattice.
This can be checked by comparison of a direct
evaluation of the correlation function with the
result of using Callen's representation,

(S')
= m ' X (S' ~tanh(IC, S„„,) T(o-', a. )), (5)

where the product o-,'S',j is equal to the sum of all

terms in S' containing o-,', and m is a multiplicity
factor to avoid double counting. For example, S„'„,
is just the sum of the nearest neighbors of o-,'.
[Equation (5) can be easily generalized for models
with different symmetry. '

By choosing the set [p ) to make (S' —S' ) = 0,

where o-;= +1 or —1 and the sum is taken over
nearest-neighbor pairs. In general, E will indicate
the coupling parameter associated with an operator
S, which is some combination of the spins.

Consider a general RG transformation

P'(o-') = Tr T(a-', o)P(o-)-
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TABLE I. Parameters of an optimzed RG transforma-
tion for the nearest-neighbor d =3 Ising model at the
critical point. The second column gives the relative posi-
tion of the neighbors contributing to R, (o-). The last

three entries indicate contributions to R corresponding to
the product of the spins at the indicated sites. These esti-
mates were obtained from an MC simulation on a

16X16&16 lattice, using 2. 16&&10 MC steps/site start-
ing with a well-equilibrated configuration from older
simulations, with data recorded every 20 MC steps/site.
The numbers in parentheses indicate one-standard-
deviation statistical error in the last digit.

Type

0.1592(6)
—0.0762 (3)
—0.0473 (3)

0.0396(5)
0.0025 (3)

—0.0044 (3)
0.0010(2)

—0.0019(2)
—0.0007 (4)

0.0040 (4)
—0.0201 (4)

0.0021(3)

(100)
(»0)
(111)
(.200)
(210)
(211)
(220)
(221)
(222)
(110)x (110)x (010)
(100) x (010) x (001)
(111)x (110)x (001)

the RG transf'ormation can be optimized to make all

renormalized coupling constants ~K' j equal to zero
except for the nearest-neighbor coupling.

Since the RG parameters only enter the expres-
sions for the renormalized correlation functions
through the weighting function T(a.', a), deriva-
tives of the differences in the two expressions can
be calculated from the MC simulation in a straight-
forward manner by differentiating Eqs. (3) and (4),
allowing the optimal parameters to be found effi-
ciently.

To illustrate this procedure, I have used an RG
transformation based on the majority rule with scale
factor b =2. If the sum of the spins in a 2&&2 block
is nonzero, it determines the new spin to be + 1 or
—

1 (po=~). If the block sum is zero, the new
spin is determined from Eqs. (3) and (4), with use
of the sum of those neighboring renormalized spins
that are uniquely determined by the majority rule.
Different parameters correspond to different neigh-
bors, and values found for the d = 3 Ising model are
shown in Table I.

None of the optimized RG parameters is large,
and they fall off rapidly with distance. Only one of
the multispin terms seems to be significant, and it
is far smaller than the nearest-neighbor contribu-
tion.

The success of the optimization has been checked
by a direct computation of the renormalized cou-
pling constants for the first two iterations. " The
results for both iterations were consistent with the
nearest-neighbor model within statistical errors of
less than 0.0015 on the first and 0.007 on the
second iteration for all seventeen coupling con-
stants considered.

For the critical exponents, it is important to note
that any local RG transformation should, in princi-
ple, lead to the correct values. If the optimized
transformation has indeed mapped the critical point
onto itself, there should also be no problem with
convergence towards the fixed point in an MCRG
calculation. Very small lattices could be used and
the statistical errors would be greatly reduced.

This is particularly important for the d =3 Ising
model, for which extensive MCRG work has re-
vealed a particularly slow convergence, requiring
lattices of at least 64X64X64 if a simple majority-
rule transformation is used. '

As the data in Table Il indicate, the optimization
is still not perfect, but substantial progress has been
made. The first iteration for yz~ is only about 2%
below the best estimates of other methods, while
the second iteration is already within the uncertain-
ties of all other methods. Table II is to be com-
pared with the sequence of estimates for yz~ of
1.425, 1.519, and 1.565 for the first three iterations
with a simple majority rule. "

Table II also contains data for the leading ir-
relevant eigenvalue. Recent MCRG work by Paw-
ley et al. using seven operators showed poor con-
vergence for this eigenvalue and a deviation from
the usually accepted value of about —0.8. ' They
attributed this to the small number of operators
used and suggested that the inclusion of more
terms would improve the convergence. Table II
shows that this is indeed the case, and that MCRG
results are consistent with those of other methods.

However, even though the convergence shown in
Table II looks extremely good, the statistical errors
for yz~ are small, and the values are those expected,
systematic errors still have to be investigated and
this calculation should be regarded as a feasibility
study for future work. The values for the magnetic
exponent in the first iterations turn out to be very
sensitive to the RG parameters, and the calculation
from which Table II was taken gave values of 2.502
and 2.500 on the first two iterations, instead of
2.485, as expected. Although this discrepancy is
less than 1%, it could reflect a small error in the as-
sumed values or a more fundamental problem, like
the existence of a fixed point for imperfectly opti-
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TABLE II. MCRG estimates for the leading thermal critical exponents of the nearest neighbor d = 3 Ising model from
a simulation on a 16X16& 16 lattice. The RG transformation used older estimates for the optimized parameters that
differ slightly from Table I. The simulation used 1.08 & 10' MC steps/site (starting from the last configuration of an ear-
lier simulation), with data recorded every 20 MC steps/site. X, is the number of RG steps and W, is the number of cou-
plings included in the analysis.

1

2

3
4
5

6
7

8

9
10
11
12
13
14
15

1 ~ 506(2)
1.553 (1)
1.558(1)
1.558(1)
1.556(2)
1.556(2)
1.556(2)
1.555(3)
1.556(3)
1 ~ 558(3)
1.558 (3)
1.558(2)
1.558(2)
1.558(2)
1.558 (2)

—1.86(4)
—1.56(2)
—1.57(7)
—1.04(5)
—1.05(5)
—1.14(3)
—0.72 (5)
—0.73 (4)
—0.83 (7)
—0.76(8)
—0.77(7)
—0.75 (10)
—0.76(10)
—0.76 (10)

1

2

3
4
5

6
7

8

9
10
11
12
13
14
15

1 ~ 519(9)
1.588(8)
1.593(8)
1.590(8)
1 ~ 586(7)
1.585(7)
1.584(7)
1.584(9)
1.585(9)
1.586 (9)
1.587(9)
1.585 (9)
1.585(9)
1.585(9)
1 ~ 585(9)

—2.01(4)
—1.61(4)
—1.65(10)
—1.24(6)
—1.33 (7)
—1.39(4)
—0.74(6)
—0.69(6)
—0.74(7)
—0.88 (13)
—0.88 (14)
—0.87 (17)
—0.87(17)
—0.87(16)

mized transformations.
It is perhaps surprising that so little freedom in

the transformation is necessary to map the nearest-
neighbor critical point onto itself. The success of
the calculation suggests that it is possible to place
the fixed point anywhere on the critical hypersur-
face. Note that this does not conflict with the asso-
ciation of irrelevant operators with corrections to
scaling, since the amplitudes of the corrections do
not have to vanish at a fixed point. In general, the
amplitudes are determined by integrals along the
trajectories away from the fixed point, rather than
properties of the RG transformation at the fixed
point. The small lattices required suggest that this
approach can also be used in analytic work or dif-
ferent types of numerical calculations. '

In applications of the MCRG approach to lattice
gauge theories, it is important to be able to follow
the RG trajectory when the strength of the renor-
malized coupling is not known. ' Hasenfratz et al.
have already used optimized RG transformations in

MCRG studies, where the optimization of a single
parameter was done in perturbation theory. ' Ex-
tending the above analysis to include the calculation
of the renormalized coupling Kt, " while optimiz-
ing the RG transformation to set all other couplings
equal to zero, would provide a systematic method
for investigating one-parameter RG trajectories
with use of MC simulations on small lattices. This
procedure would also be applicable to the accurate

location of critical points.

'Th. Niemeijer and J. M. J. van Leeuwen, in Phase
Transitions and Critical Phenonrena, edited by C. Domb
and M. S. Green (Academic, New York, 1976), Vol. 6.

S. K. Ma, Phys. Rev. Lett. 37, 461 (1976).
R. H. Swendsen, in Real-Space Renornrali:atiorr, Topics

ir? Current Physics, edited by Th. W. Burkhardt and J. M.
J. van Leeuwen (Springer, Berlin, 1982), Vol. 30, p. 57,
and r eferences therein.

4K. Binder, in Monte Carlo Methods in Statistical Phy-
sics, edited by K. Binder (Springer, Berlin, 1979), Vol. 7,
p. 1.

5K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
R. H. Swendsen, Phys. Rev. Lett ~ 47, 1775 (1981)~

7M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rep. 95,
2029 (1983)~

T. A. Wit ten, Jr. , and J. J. Prentis, J. Phys. A 14, 447
(1981),

H. B. Callen, Phys. Lett. 4B, 161 (1963).
' G. Parisi, R. Petronzio, and F. Rapuano, Phys. Lett.

128B, 418 (1983).
"R.H. Swendsen, unpublished.
' H. W. J. Blote and R. H. Swendsen, Phys. Rev. B 20,

2077 (1979).
' G. S. Pawley, R. H. Swendsen, D. J ~ Wallace, and

K. G. Wilson, unpublished.
'4A. Hasenfratz, P. Hasenfratz, U. Heller, and

F. Karsch, unpublished.

2323


