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Dissipation in Computation
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The question of the energy dissipation in the .computational process is considered.
Contrary to previous studies, dissipation is found to be an integral part of computation.
A complementarity is suggested between systems that are describable in thermodynamic
terms and systems that can be used for computation.
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Every numerical computation, no matter how

abstract, is ultimately bound to limits imposed
by physical processes that occur in the real
world. A question therefore arises as to whether
or not the physical laws that govern the appropri-
ate processes impose constraints on computation.
'This question has recently attracted considerable
attention with regard to the minimum energy re-
quired for a bit manipulation. '' All known com-
putational systems, including biological ones, are
dissipative, and it was suggested quite early that
the computational (or physical) processes which
really require energy dissipation lead to a mini-
mum energy loss per step of''

k7' log, 2.

Landauer' a.rrived at (1) through an argument that
most computation is logically irreversible and
this necessarily imposes physica. l irreversibility
due to a loss of phase space The e.arliest ap-
proach which yields (1) uses an analogy between
logic gates and communication channels. '' In
this analogy, sometimes attributed to von Neu-
mann, (1) represents the minimum energy re-
quired per bit for accurate transmission of the
bit to the next ga, te in the presence of noise.
While no flaw has been found which would cause
this analogy to produce an inaccurate measure of
the minimum dissipation, later workers have
largely ignored it.

Contrary to this latter interpretation, there is
a current belief that favors the possibility of dis-
sipationless computation; i.e. , dissipating less
than (1) per bit operation. These recent models
rely upon Landauer's interpretation that (1) aris-
es from the loss of phase space in erasure, and
therefore suggest that logically reversible Turing
machines are possible. ' This led to the conelu-

sion' that computation can be carried out at no

expense of energy, although the information-the-
ory arguments have never been refuted.

In this paper, we point out. that logical irrever-
sibility is irrelevant for the question of the ener-
gy requirements of computation, and that the ef-
forts based upon logical reversibility lack a phys-
ical basis. In reconsidering the concepts of com-
putation and measurement, we conclude that com-
putation requires a nonequilibrium system and
requires dissipation. Our approach is to consid-
er the energy requirements of single bit opera-
tions rather than the overall logical structure of
the computation.

The physics of computation involves an element
of measurement and interpretation at its very
foundation. WhOe the time evolution of any sys-
tem can in principle be viewed as representing
a numerical process, computational systems are
those which implement a 'Turing machine, ' the
general-purpose computer. In the classical
sense, a Turing machine is composed of an au-
tomaton and a finite-dimensioned .tape. The au-
tomaton, or reading head, has several internal
parameters and ca,n change its state as a result
of an external interaction, such as in response
to a symbol read from the tape. In addition, it
ean change the symbol recorded on the tape. In
particular, we note that the automaton changes
its state in response to inputs from the tape dur-
ing computation.

Let us now turn to the questions of logical re-
versibility in the literature. Landauer' has a,r-
gued that dissipation enters the computational
process when a random tape (a tape with unknown
content) is erased. At the end of every one-tape
Turing machine computation, information is
thrown away by erasing all intermediate results
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(the random tape) and this is presumably the op-
eration that results in dissipation. In deleting
a random bit, he argued that the phase volume
is reduced by a factor of 2 corresponding to the
logically irreversible mapping of the 0 or 1 onto
either as a final state. According to Landauer,
this decrease in phase volume is accompanied by
dissipation according to usual equilibrium thermo-
dynamic arguments regarding entropy. We argue
below that this interpretation is wrong. However,
Bennett' adopted Landauer's line of reasoning
and cured the computational process of this logi-
cal irreversibility by constructing a three-tape
'Turing machine, in which strictly logically rever-
sible bit operations are used. In the first phase
of this construction. , the computation is per-
formed. 'The result is then copied to a separate
tape and the final phase causes the machine to
compute backward thus erasing all intermediate
results. Because of the logical 1:1mappings,
this construction avoids the erasure of random
tapes, and is viewed as proof' that dissipation-
less computation is possible.

The above lines of reasoning, which are sup-
posedly based upon the thermodynamic argu-
ments, must be reexamined. Although the era-
sure of a random bit is a logically irreversible
operation, it does not imply a reduction in phys-
ical phase space. Storage of an information bit
requires the presence of a barrier to prevent
thermalization of the system. ' Erasure returns
all bits to a common state. From the point of
view of the bit, it is always in a single state
(either 0 or 1). Bit operations are always physi-
cal 1:1mappings and are not accompanied by dis-
sipation (if done slowly enough) because of a, rgu-
ments regarding entropy. On the other hand,
Landauer's argument would apply if a bit was
physically random, i.e. , the 0 and 1 states were
randomly occupied in the presence of thermal
noise. Then, however, these bits could not be
used for computation as they are changed sto-
chastically rather than according to a defined
program.

There appears to be no physical reason to
stress the operation of erasing a single bit or of
throwing away logical information. For the read-
ing head of a Turing machine, all successive bits
are random, regardless of whether the operation
is "compute" or "erase. " In particular, a finite
random tape is not essentially different from any
other tape in this regard. Therefore, a Turing
machine can be programmed to erase a random
tape. " Moreover, Bennett's machine is no more

than a specialized three-tape Turing machine,
and any such machine can be cast as a one-tape
machine. '" 'The portion of the machine that
erases the intermediate results is just the need-
ed algorithm to erase the particular "random"
tape. We are therefore led to the conclusion that
Bennett's construction shows that any one-tape
machine can be made logically reversible, but
the discussion of logical reversibility is irrele-
vant to considerations of physical reversibility
and dissipation in computers, a conclusion
reached earlier by Mead and Conway. " If Ben-
nett's machine is physically reversible, it is be-
cause the individual bit operations are reversible,
but the rationale for believing that their bit oper-
ations are physically different from others has
never been given. However, if bit manipulations
are dissipative, the entire computation is dis-
sipative.

A realization of a three-tape machine has been
proposed, the so-called "Brownian" computer'
which operates close to thermal equilibrium. An
external force still is needed that drives the com-
putation and, as a consequence, time-reversal
symmetry is broken. It is assumed, but not dem-
onstrated, that for arbitrarily low computation
speeds, arbitrarily little energy has to be dis-
sipated, although this may be incompatible with
the earlier requirement. " In any case, only com-
putation at finite speed is of interest. Toffoli's
"billiard ball" computer, "mhich operates at finite
speed and consumes no energy, assumes zero
noise and no friction and is therefore dissipation-
less by const~ction. However, the slightest
noise (even in the initial condition) disrupts the

computation completely; it is an example of a
strongly mixing system. " We turn now to a dis-
cussion of dissipation in computation which con-
siders bit operations rather than the overall logi-
cal reversibility of the process. We mill find that
dissipation is an integral part of computation.

An integral part of every computational step of
the Turing machine is the process of reading in-
formation from the tape, and this in fact is just
the process of making a measurement on the tape.
The essential ingredient of a computer is the
reading operation that is necessary for the Tur-
ing machine. 'The state of the latter system can-
not be allowed to evolve freely, since state transi-
tions within the reading head must be made to ac-
commodate different computations. In this sense,
the computer must be forced along the desired
logical path. At each step of the Turing machine,
we carry out a reading operation and the subse-
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quent application of a rule which governs transi-
tions within the automaton and symbols on the
tape. Computation, therefore, consists of a
series of steps, which force the system from one
state to its logical successor. It is the competi-
tion between measurement and the thermalization
process that requires energy to be dissipated. In
this respect, the measurement in the presence
of noise and the need to keep the system from
thermalizing are just the standard arguments of
information theory. " The amount of energy dis-
sipated in each reading operation has to increase
for increasing accuracy. In general, the meas-
urement requires an action away from thermal
equilibrium which consequently leads to dissipa-
tion. As a result, computation now emerges as
dissipative at least because of the reading opera-
tion, a price that has to be paid in expended ener-
gy in order to keep the computation on its desired
track in the presence of thermal noise. Again,
we see that only systems that are forced along a
nonthermodynamic path by virtue of measure-
ments and subsequent decisions can be applied
to computation. We are therefore led to the con-
clusion that any Turing machine, even a logically
reversible one, is physically irreversible be-
cause of the competition from noise. Equation
(1) arises from just these considerations. Thus,
discussions which would use logical reversibility
to deduce physical reversibility are restricted to
the irrelevant case of ~=0.

In this respect, a computer resembles Max-
well's demon. " 'The evolution of the system is
made dependent upon the outcome of a measure-
ment thereby manipulating the development in
time. The demon violates the microscopic re-
versibility of the trajectories in phase space by
means of measurements and thus forces the sys-
tem into a nonthermodynamic evolution. How-
ever, a price in dissipated energy has to be paid.
A system that does not contain these measure-
ments cannot be prevented from thermalizing.
Compare, for example, Feynman's" construc-
tion of a purely mechanical demon (no decisions
on its own) by ratchets and pawls which cannot
prevent the system from thermalizing. Only sys-
tems that are forced along a nonthermodynamic
path by virtue of measurements, and thus dissipa-
tion, can be used for computation.

Our discussion here is confined to the domain
of classical physics. We abstain from a discus-
sion of quantum mechanical models in view of the
unsettled question of the quantum mechanical
measurement process which has to be considered

at every step of computation. In the literature,
there exists a quantum mechanical model" of
Bennett's three-tape machine which claims to be
physically reversible when operated at finite
speed. However, the crucial question of the
measurement process has not been addressed.
In that respect, this model in also subject to our
criticism.

In summary, the previous approaches to dis-
sipationless computation fail because equilibrium
thermodynamics cannot be employed for systems
that compute. In particular, the tape in the Tur-
ing machine represents stored information. If
this information is to be preserved, the system
must be kept in an ordered, far-from-equilibrium
state. Such systems are often called dissipative
structures. ' 'O' " For computation, individual
symbols on the tape should only be changed ac-
cording to logical rules (following a read opera-
tion), and must be secured from being changed by
thermal noise. Consequently, there appears to
be a contrast, or complementarity, between sys-
tems that can be used for computation and sys-
tems that are describable in. equilibrium thermo-
dynamic terms. The more a system satisfies
equilibrium thermodynamics, the less it is usable
for computation, and conversely. Only systems
with a deterministic time evolution, and that are
secured from external noise by being maintained
in an ordered nonequilibrium state, can be used
to represent physically the deterministic process
of computation. Dissipation enters through the
need to preserve the ordered state of the tape and
the need to make measurements on the tape in the
presence of noise. The minimum energy dissipa-
tion is thus defined by the ability to distinguish
a signal from noise, and the long-established in-
formation-theoretic arguments lead to the lower
limit (1)."
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For a review, see, e.g. , Int. J. Theor. Phys. 21,
Nos. 3/4, 6/7, and 12 (1982), which contain the Pro-
ceedings of the Conference on Physics of Computation.

The general thrust is reviewed by B. Landauer, to
be published.
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