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Nonobservability of Early-Time Departures from Fermi’s ‘‘Golden Rule”’

E. J. Robinson
Physics Department, New York University, New York, New York 10003
(Received 27 April 1984)

The problem of the early-time decay rate of a model system is addressed by examining the
evolution of the probability current at a detector located a macroscopic distance from the
source. If one interprets this current as the flux of decay products, early-time departures
from Fermi’s ‘‘golden rule’’ are not, in principle, observable.
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When an effectively constant interaction causes
an isolated discrete level to decay into a single con-
tinuum, the amplitude of the initial state, a;(t),
behaves, to a very good approximation, such that
its absolute value is given by the well-known law,
la; ()| =exp(—vyt/2), where y is the transition
rate that one would calculate from Fermi’s ‘‘golden
rule’” in first-order perturbation theory. It is also
well known that the exponential law fails at early
times, a feature associated with the presence of
large transient amplitudes for continuum states far
removed from resonance. Only if the continuum is
unbounded and the density of final states and the
matrix elements of the coupling are energy in-
dependent is the Wigner-Weisskopf (WW) approxi-
mation, which is used to derive the exponential de-
cay, exact.!

There has recently been some work?? devoted to
calculating the early temporal evolution of |a,(1)],
in which the nonlinearity of the time derivative is
explicitly displayed. The present paper is written to
explore whether this behavior really represents a
departure from a constant decay rate as determined
by a signal registered by a remote detector. In part,
I seek the answer to the question, ‘“What is the
connection between 1—|a;(#)|? and measurements
of the probability that the system has decayed?”’ I
am not challenging the details of the calculations re-
ported in Refs. 2 and 3, but questioning whether
they apply to experiments that are, or could be, per-
formed. Instead of determining |a,(#)|2, the point
of view shall be adopted that a measured rate of de-
cay is to be identified with the probability current
arriving at the detector. For r— oo, this current is
identical to d[1—|a,(#)|?1/dt, but the two results
are in disagreement at early times. If the interpre-
tation of the asymptotic current as ‘‘the’’ decay rate
is correct, the conclusion will be that the ‘‘golden
rule’’ applies even as t — 0.

Consider a hypothetical experiment. We assume
that at r=0, a system of microscopic extent, the
source, is prepared in an eigenstate of the unper-
turbed Hamiltonian, Hj, and the perturbation, H’,

© 1984 The American Physical Society

is switched on. This could correspond either to a
situation where the interaction is always present,
and the system suddenly projected into an eigen-
state of H, or to a case where the system entered
the initial state at an earlier time, with the interac-
tion, represented, e.g., by a classical field, suddenly
turned on. A transition to the continuum (the de-
cay) is recorded via a detector placed at a macro-
scopic (i.e., asymptotic) distance from the source.
If the decay product is a particle of velocity v reach-
ing the detector at time 1y, it is implicit that the de-
cay occurred at an earlier time 7, =1;— r/v. The ex-
perimental decay law is determined by performing
an ensemble average of n(r,), where n indicates
the relative number of particles emitted at times #,.

The foregoing suggests that the theoretical
description of the decay rate that best corresponds
to experiment is, in fact, given by the surface in-
tegral of the probability current density over a
sphere of radius . We shall explicitly calculate, in
the position representation, the time evolution of
the wave function ¢ (1) for a model problem, noting
that only its behavior at large r is of significance.

Whether or not the law of constant initial decay
rates is rigorously true seems to be independent of
the details of the system under investigation, and
we should be able to deduce global properties of
discrete-continuum transitions within the context of
a specific calculation, so long as the problem select-
ed for solution does not contain unrepresentative
artificialities. With this restriction, one is free to
analyze any convenient model system. We choose
for the ‘‘decay’ process the photodetachment in-
duced in a model negative ion by a classical radia-
tion field. The light is turned on abruptly at =0,
and maintained at constant amplitude thereafter.
We shall work in the context of the dipole and
rotating-wave approximations. The first is adopted
merely for convenience—it will be obvious that the
conclusions drawn will apply to an arbitrary com-
bination of multipoles. We shall see later that mak-
ing the rotating-wave approximation has no observ-
able consequences in the present picture.
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In this model, a particle initially bound in an s ic form of the wave function and the probability
state by a local potential interacts with an external current density. It will be sufficient to work in
quasiharmonic electric field polarized along the :z first-order perturbation theory, since the lowest
axis. The field is given by E(r) =2F,cosQ¢, with nonvanishing contribution to the current will be
Eo()=2E,S(1), with §=0, +<0, and S=1, proportional to E2.

t>0. Our task is to solve the time-dependent The full wave function may be expanded as a

Schrodinger equation, and determine the asymptot- power series in E,, yielding ¢ (1) =3 o EM, (1).
I The n=1 contribution is the solution to

(Ho—=i8/30W,=— H'Yo(T,1)=—S()rcostug(r)/rlexpl — i(wy+ Q)11 YJ(0,6), (1)

where Hy= —V¥2+ V(r), lug(r)/r1Y§(8,¢) is the spatial part of the unperturbed wave function, and w,
is the initial-state unperturbed energy. We work in atomic units here and throughout the paper. It is not
necessary to calculate {s,(7), since the contribution to the current arising from the cross term between Y, and
Yo is exponentially small for r — oo. The right-hand side of Eq. (1) transforms like P;(cosf), so that the
left-hand side must also be of the form u,(r,7)cosf/r, with u, satisfying

1 d2 1 9 Srug(r)
gt TV i) = - 2=
2 (r) Iar () (am) 172
The factor exp( —er) is appended, as usual, to make a transformation to the frequency domain convergent.
It is understood in the following that passage to the limit e — 0 is always implied.
Writing u(r,1) in terms of its Fourier transform, we have

expl—i(wg+ Q —ie)t]. (2)

u(r)=Q2m) V2" g (r,w)expl—i(w+ i)l do,
where i1, (r, w) satisfies

e rug(r)
V221 w—wy— Q+ie’

1 d2 1 e
—7F+_r?+ V(r)—w—le]ul(l‘,w)=

(3)

The inhomogeneity is the Fourier transform of the right-hand side of Eq. (2). Equation (3) may be formally
integrated via the Green’s function G, (r,r’), which is a solution of

d?
—————2V(r)+k2+le
2

" G,(rr)=8(r—r"), (4)

where k2=2w. In the region of interest, r — oo and
G,(rr) ~exp(id,)v (kr')exp(ikr),

where 3, is the L =1 phase shift at frequency w, and v; is a solution, regular at » =0, of the homogeneous
version of Eq. (4) that behaves asymptotically like sin(kr —7/2+8,)/k. Accordingly, the asymptotic form
of ity (r,w) is

i ()~ exp(id,) M, exp(ikr)

“he V2r w—wg— Q +ie

where M,,,=j:r’u0(r’)v1(kr’) dr’. Returning to the time domain, we have

o expl —iwt—kr+iet)lexp(id,) M, dw
u (r,)) =+ 3/2f

w—wy— (L +ie (5)

The right-hand side of Eq. (5) bears a close resemblance to the integral appearing in the description of the
dynamics of a free wave packet,! and we express the exponent in terms of the resonant frequency
w,=wy+ Q, with k?=2w,. This yields

i . .
u(r,t) = ﬁexp[—l(w,l—k,r+lel)]l.
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where

1—f°° expl—il{w—w,)(1=r/k)+2(w—w,)?r/k(k+k)?])

w—w,t i€

M, exp(id,)dw.

The contributions to / arising from the quasi Gaussian and the denominator are very sharply peaked around
w,. Accordingly, we replace the factor M, exp(id,) by its resonant value and remove it from the integrand,
yielding

oo — —_ . N r__ . _ 2 . . \2
1=Mw’exp(i6w')f_ expl—i(w—w,)(r—r/k)lexpl = 2i(w—w,)%r/k,(k + k,)*]dw

o w—w,t i€ =Mﬁ,’exp(15m’)J.
This Ansatz, is, of course, identical to that made in deriving the ‘‘golden rule.”” The difference is that in the
present case we are able to estimate the error introduced into the probability current by the approximation.
We shall return to this point later, and comment now merely that the correction to ys; associated with the re-
placement is O (r~2)_ which does not contribute to the current in the asymptotic region. The remaining in-
tegral is of the form of the Fourier transform of the product of two functions, which may be expressed in the
time domain by the Faltung theorem. This is

r—r/k’
=—QmVaif _F(nar,

where the effect of the transform of the denominator, a temporal step function, is incorporated into the lim-
its, and Fg is the Fourier transform of the quasi Gaussian. The function J is very nearly a step function—it
is vanishingly small until r ~ r/k,— s, where sis a time ~ (r/k;?)"2, short compared to r/k,, and is essen-
tially unity after t ~ r/k,+s. The exact form of J is not amenable to computation, but its features may be
understood by approximating the quasi Gaussian by a true Gaussian. In this approximation, which is valid
with an error that is asymptotically small, since r >> 1,

t—kJ/r
J=—i(mwk}/r)V2(1— i)f_°° o/ exp(it2k3/2r)dr'.

If the ‘‘resolving time’’ of the detector is >> s, J will be a good approximation to a step function. The tem-
poral evolution of the probability current on the detector sphere is now clear. The current is zero for times
less than ~ r/k,, and rises, in an interval on the order of s, to a value given by the ‘‘golden rule.”” Apart
from the temporal distortion of the leading edge and the transit time delay, the current follows the time evo-
lution of the driving pulse. Note that the nonrectangular shape of the leading edge is not a consequence of
the breakdown of the WW approximation, but occurs as a result of the asymptotic energy-momentum disper-
sion relation. The distortion is analogous to the spreading of a wave packet and would be present even if
WW were exact.

We return now to the approximation of replacing the matrix-element factor by its value at w,. The error
term is

) 2 — 2.
IE=f_w[M,,,exp(i8,”)—erexp(iawr)]exp[_ ilw—w,) ’]expl—i(w—w,)

m f—k—f”(w—w,ﬂ-ie)_]d(o.
r r r

By construction, the square bracketed factor van- -

ishes near v = w,, and removes the near singularity
due to the denominator. Because r is very large,
the integrand oscillates wildly, and may be evaluat-
ed approximately by stationary phase. The ex-
tremum of the exponent occurs at roughly
w—w,=—(t—r/k,)k3/r and gives Ip~ qr~2,
where q=k,3/2, which is asymptotically negligible.
Thus, if it is correct to identify the probability
current with the experimental decay rate, early time
departures from the ‘‘golden rule,” arising from
corrections to the WW approximation, are not ob-
servabie.

To illustrate the order of magnitude of represen-
tative numerical values, consider a typical photode-
tachment experiment. Choose for convenience a
final-state energy to be 1 Ry, so that £, ~ 1 a.u.
Typical detachment cross sections are ~ 10~ 17 cm?,
so that if the photon flux is 10°/sec (an optical in-
tensity of a few milliwatts per square centimeter),
we find a decay time  ~ 10?2 sec. If the detector is
assumed to be located — 1 m from the source, the
transit time t7 is on the order of 1 usec, while r,,
the rise time of the detector current associated with
the distortion of the leading edge, is ~ 10~ !2 sec.

2311



VOLUME 52, NUMBER 26

PHYSICAL REVIEW LETTERS

25 JUNE 1984

Thus, the signal is delayed with respect to the onset
of the interaction by a time virtually identical to ¢,
while ¢ is ~107% of #;. Both #; and ¢, are very
short compared to and independent of 7.

I note that if one applied the same procedure to
calculate the contribution to the wave function due
to the antirotating component of the radiation field,
one would find an exponentially decaying function
of rin the asymptotic region, which likewise makes
a negligible contribution to the current. Similarly,
the ‘‘reversible ionization’’ reported by Haan and
Geltman* would not be observable if the decay rate
is to be identified with the current. Those authors
analyzed three-photon ionization, and found contri-
butions to 1—|a;(9)|?> due to below-threshold
(one- and two-photon absorptions) continuum-state
amplitudes. The components of the wave function
associated with those amplitudes are also asymptoti-
cally exponentially decreasing functions of r, and
make no measurable contribution to the current.

If the interaction is switched on in a short, but
finite, time, the results will be essentially unaffect-
ed, since effects will be masked by the distortion of
the leading edge of the pulse. This stands in dis-
tinction to the large-time behavior, which is signifi-
cantly modified, a result presented recently by Mit-
tleman and Tip.

The present analysis is based on the notion that
the decay is detected at macroscopic distances, and
may not be applicable in experiments where the
detector is very close to the decaying system.
Furthermore, it assumes that the system undergo-
ing transitions is accurately an isolated discrete state
coupled to a true continuum. Clearly, if the final
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state is quasidiscrete the transition rate may exhibit
nonexponential behavior at all times.

To summarize, it is found that if one associates
the decay rate of a system with the probability
current in the asymptotic region, early-time devia-
tions from the ‘‘golden rule’ arising from the
breakdown of the Wigner-Weisskopf approximation
are not detected. Nonlinearities in the time deriva-
tive of |a;| manifest themselves in the probability
flux only in the near field—they are absent in the
asymptotic region and do not contribute to the
recorded decay. With this point of view, the ‘‘gol-
den rule”’ is valid from the earliest onset of the sig-
nal, except for an interval during which the current
grows to its steady value. This finite-rise-time ef-
fect, which is related to wave-packet spreading,
would be present even in cases where the Wigner-
Weisskopf approximation holds exactly.
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