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Unambiguously Complete Characterization of Reactions
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It is shown that in order to determine all reaction amplitudes for a reaction containing par-
ticles with arbitrary spins without even a discrete ambiguity (except for an overall phase fac-
tor), one must measure at least one observable with spin polarization along each of three
noncoplanar directions. The result has an impact on experimental programs measuring po-
larization quantities in elementary particle, nuclear, atomic, and molecular physics.
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The measurement of reaction amplitudes has oc-
cupied a central role in recent years in all branches
of microscopic physics, because it has been realized
that a reliable testing of dynamical theories can be
performed only on such an amplitude level (instead
of on the differential cross section level), because
clues toward yet unknown dynamics are best ob-
tained on such a level, and because the techniques
for performing sophisticated polarization experi-
ments have developed rapidly.

A central question in connection with such mea-
surements of reaction amplitudes has been the
characterization of complete sets of experiments
that can determine the reaction amplitudes. The
word "complete" has been used in two meanings.
One denotes a set that can eliminate the entire con-
tinuum of ambiguities from the determination of
amplitudes (except for an overall phase factor,
common to all amplitudes, which is unobservable in
a purely experimental or phenomenological con-
text) while still permitting the existence of discrete
ambiguities which arise from the bilinear nature of
the relationship between observables and ampli-

tudes. There has been a large number of contribu-
tions'2 in the literature to the formulation of cri-
teria for choosing complete sets of amplitudes in
this sense.

The other meaning of "complete" is the more
literary or strict one, namely a set that eliminates all
ambiguities, continuous or discrete (except again
for the overall phase factor mentioned above).
This problem has been much less discussed, even
though in actual amplitude analyses, such remain-
ing discrete ambiguities have caused problems.

The aim of this note is, therefore, to offer a com-
pletely general theorem about the nature of "truly
complete" sets of experiments, namely those which
determine the amplitudes free of any ambiguities
(except for the overall phase factor mentioned
above). The theorem states that in order to deter-
mine all reaction amplitudes for a reaction contain-
ing particles with arbitrary spins without even a
discrete ambiguity (except for an overall phase fac-
tor), one must measure at least one observable with

spin polarization along each of three noncoplanar
directions.
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The theorem is an extension of the theorem in
Section II of Ref. 2, which proved that for a com-
plete set which nevertheless allows discrete ambi-
guities, we need two nonparallel directions. The
conceptual content of that proof can be summarized
in a way which is different from the language used
for the proof in Ref. 2, but which will serve us
better in the present extension of the theorem.

The most suitable formalism for this is one in
which the relationship between the polarization ob-
servables and the bilinear combinations of ampli-
tudes ("bicoms") is as simple as possible. Such a
class of formalisms is the optimal formalism in
which the spin tensors used contain the fewest
nonzero matrix elements compatible with Hermiti-
city. In that formalism, for a four-particle reaction

W(uvH& UVHp'go)H&, QH0)

3 +B C + D the amplitudes are denoted by
D(ea;db), where a, b, e, and the d are the spin
projections of the spins of particles 3, B, C, and D,
respectively, with respect to some (specified)
quantization directions. The observables then are
denoted by

W(u vs, UVHp, ((oHq, -OHg),

where u and v are indices pertaining to particle 3, U
and V to particle B, g and co to particle C, and: and
0 to particle D, and where H can be either "Real"
(R) or "Imaginary" (I), and Hp = R implies

p = +1, while H~=I implies p = —1. In this for-
malism the relationship between observables and
amplitudes, for the most general case of a reaction
with arbitrary spins, is given4 by

,
'

KZZ2H~g —[D((u, U)D'(cuv, 0 V) +(oD (cov, U)D'(gu, 0 V)

+pD (gv, U)D'((0u, 0 V) +pwD (eau, U)D'((v, 0 V)

+PD((u, V)D'(o)v, 0 U) +PwD (a)v, V)D'($u, 0 U)

+pPD (gv, V)D'(emu, fl U) +pPwD (cpu, )D'((v, II U) j,

where w =pq, W'=PQ, Z& ——1+pq —p+q, Z2=1
+PQ —P+ Q, and K= 1 unless w = 8'= —1, in
which case K = —1.

It is evident from Eq. (1) that if all the H's on
the left-hand side are R, we get on the right-hand
side also R only. Thus we see that observables in
which the four arguments are either diagonal (e.g. ,
u = v, in which case H~ must be R ) or off-diagonal
and real (e.g. , u & v, Hp=R ) are linked only to
bicoms which are the real parts of the products of
two amplitudes. In order to find an observable
which is linked to the imaginary part of the product
of two amplitudes, we have to have (an odd
number of) off-diagonal imaginary arguments in
the observable.

The next step in our proof is to link the real and
imaginary arguments in the observable with polari-
zation directions of the particles. We know that, for
arbitrary spin, the various polarization tensors for
polarization in the direction of the quantization axis
will be diagonal. Let us denote this direction by z.
Then we also know that the vector polarization ma-
trix in the x direction will be real and symmetric,
and that in the y direction imaginary and antisym-
metric. Higher polarization tensors in these direc-
tions will have the same property, since they can be
built up out of these vector polarization matrices,
and as S„2+S~2+S,2= S(S+1), in this building up
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S~ needs to be used only linearly if we use S„and
S, . Thus we see that the polarizations in the x
direction will correspond to R's in the arguments of
the polarization observables, while the y directions
will correspond to I.

Finally we note that if we determine only the
absolute-value squares and the real parts of the
products of amplitudes, discrete ambiguities must
remain, since we then know only the cosines of the
phase angles between amplitudes, and the inverse
of the cosine is a double-valued function. In order
to resolve such ambiguities, we must measure also
some sines, that is, some observables with (an odd
number of) Es in the arguments. This completes
the proof.

Indeed, the proof suggests that if the reaction
contains four particles with spins s~, . . . , s4, and if
we denote x = pe, (2s;+ I), then the number of
discrete sets (just after the continuum of ambiguities
has been eliminated) could be as high as 2" ', and
that by at most x —1 additional well-chosen experi-
ments we can eliminate these discrete ambiguities.
These numbers will be correspondingly reduced if
the number of amplitudes is reduced by symmetry
laws additional to Lorentz invariance.

We will now illustrate the result of the theorem
on a very simple and familiar example, namely on
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the reaction 0+ —,
' —0+ —,', with time-reversal in-

variance and parity conservation, which is realized,
for example, in pion-nucleon elastic scattering. For
that case we have only two reaction amplitudes
which we will call n and p. Because this is the sim-
plest nontrivial reaction imaginable, almost any of
the conventional formalisms dealing with it are in

fact optimal. For example, in the formalism in

which the quantization axes of both spin- —,
' particles

are normal to the reaction plane (i.e. , the
"transversity formalism"), the observables are re-
lated to the amplitudes in the following way:

d ~/» = l~ I'+
I p I'. P. = &.= I~ I' —

I p I',

Kt( = K„=ReuP", K(, = —K,(
= I met. P",

where n is the direction normal to the scattering
plane, I and s are two mutually perpendicular direc-
tions in the scattering plane, P denotes simple po-
larization of the final particle, A denotes the asym-
metry with a polarized initial particle, and K,b is the
polarization correlation with the initial particle po-
larized in the a direction and the final particle polar-
ized in the b direction.

We see then by immediate inspection that the set
(do./d Q, P„,K»j does not give an unambiguous
determination of n and p, while any of the other
three sets of three observables out of the four do.
Note that do-/dQ (which is an average over the
two quantization states) counts, in this frame, as an

observable pertaining to polarization direction n.
This completes the discussion of the example.

In special cases more detailed criteria exist for
eliminating discrete ambiguities. For example, if
we first determine, from a set of experiments, the
magnitudes of all of the amplitudes, the necessary
and sufficient criteria can be given' in terms of the
bilinear products of amplitudes (but not necessarily
in terms of the observables) for the completely
unambiguous determination of the amplitudes.
Whereas it is likely that such criteria will be made
more general by future research, the result of this
note will remain useful because it is so simple to ap-

ply, so general in its validity, and so directly applica-
ble in designing experiments.

The consequences of this result for experimental
programs can be spelled out as follows: If the aim
is to eventually produce a truly unique set of ampli-
tudes, arrangement should be made for the capacity
to measure at least some polarization quantities in

all three spatial directions. Furthermore, since am-
biguities occur only in the relative phases of the
amplitudes, and never in the magnitudes of the am-
plitudes, it is very advantageous to use an optical

formalism for the description of the reaction in

which the determination of the magnitudes of the
amplitudes by themselves corresponds to a set of
technologically easy experiments which then can be
performed at the beginning of the experimental
program. These magnitudes will then form a com-
pletely unambiguous initial set of partial informa-
tion which, even in the absence of further experi-
ments, can be used to assess theoretical proposals
for dynamics. This initial set involves only one po-
larization direction. Adding the second direction
will allow the determination of the phases up to
discrete ambiguities (and, of course, up to an arbi-
trary overall phase factor). Finally, the addition of
the third direction will choose also between the
remaining discrete solutions. Thus we have out-
lined a three-stage structure for experimental pro-
grams, in which each stage provides functional in-

formation even in the absence of further stages,
and in which the addition of further stages refines
the already obtained information in a systematic
way.

The theorem just presented complements results
pertaining to polarization experiments along a dif-
ferent dimension, namely according to ho~ many
particles need to be polarized simultaneously. In
that realm, we know that a complete determination
of amplitudes can be made by a set of experiments
each of which involves the simultaneous polariza-
tion of at most two particles. Another general
theorem states that for a complete determination of
the amplitudes, the set of particles in the reaction
must not be divisible into two subsets such that no
spin correlation between a particle in one subset
and a particle in the other subset is measured at all.
Our theorem places a requirement on a set of ex-
periments which give a complete determination of
the amplitudes along a different dimension, namely
in terms of the number of different polarization
directions that need to be represented in such a set.
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