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Surface Effects on Particle Self-Energies
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The self-energy of a particle has a nearly singular behavior at a free surface of a Fermi
liquid, as a result of the coupling to surface excitations. The imaginary part has a linear
dependence on energy near the Fermi energy, whereas the effective mass shows a logarith-
mic divergence. The self-energy is calculated in semi-infinite nuclear matter with use of in-
teractions constrained by self-consistency; the predictions are in qualitative agreement with
experiment and more elaborate calculations for finite nuclei.

PACS numbers: 67.50.—b, 05.30.Fk, 21.60.Jz

In this Letter we examine the coupling of surface modes of a Fermi liquid to single-particle motion. The
damping of the single-particle motion turns out to have a different analytic behavior than that arising from
the coupling to bulk modes. We shall show how this comes about and then discuss the numerical application
to nucleon 1propagation in nuclei. The theory of the particle self-energy is based on the perturbation-theory
expression,

2(Fy T = [T fdT) [9Sg0(Ty To, )V (T, TV (Ty T2 IMRPACT, T € —e). M

Here g is the single-particle Green’s function in the Fermi liquid.?2 The IIRPA is the RPA polarization propa-
gator for the surface response. The polarization propagator differs from the ordinary causal RPA response
only by the sign of its imaginary part.2 In Eq. (1) Vis an effective interaction that generates the RPA surface
response from the noninteracting particle response. We studied the surface response of a Fermi liquid in de-
tail previously.® We found that a useful approximation to the effective interaction is given by the separable
function,
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Our coordinate system is chosen with the surface in the x-y plane. Here V) is the mean-field potential of the
Fermi liquid and K is a momentum vector along the surface of the liquid. The RPA polarization propagator
is calculated from the usual noninteracting polarization propagator no by the equation

HRPA=H(0)(1_ VH(O))—I. (3)
We shall use the K,z representation of II,
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The operator inversion in Eq. (3) reduces to algebraic division when the interaction has the separable form
of Eq. (2). Because of the translational degeneracy of the surface position, the RPA response must diverge
at zero frequency. This observation is used to fix the strength of the interaction, x(0). The K dependence
of « is closely related to the surface tension of the liquid.* We found in the nuclear case that a realistic-range
interaction reproduced the empirical surface tension.> With the interaction specified by these considerations,
the RPA response is found to have an approximate behavior at low frequencies given by
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where a is a constant related to the noninteracting response, and o is the surface tension. Note that Eq. (4)

diverges at K2=0, w — 0, as required. From Eqgs. (1) and (4) we may immediately deduce the analytic prop-
erties of % near e —eg. We first examine the imaginary part of the self-energy. When we evaluate Eq. (1)
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for ImZX, it is found that only final states with energy between the initial energy and the Fermi energy contri-
bute to the integral. The variation of g, near the Fermi energy can be ignored, leaving the following integral:
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The linear dependence on € — €f is to be contrasted with a quadratic dependence arising from the coupling to
bulk modes.

The real part of the self-energy can be obtained from the Kramers-Kronig relation applied to the retarded
self-energy 2™, which differs from X in the sign of the imaginary part for energies above the Fermi energy.
Thus ImX™ is nonanalytic at eg, which gives rise to a logarithmic behavior in the real part. These results are
compared with some other examples of nonanalytic behavior in Fermi systems in Table I. In coupling of par-
ticles to the bulk modes of a Fermi liquid, the leading nonanalytic term in Im3™ is cubic,’ giving a very
weak logarithmic dependence to ReX. In the Kondo effect,® particles couple to an isolated spin impurity, and
Im3 has a step-function behavior across the Fermi surface. This leads to an actual divergence in ReX, ob-
servable in the impurity scattering cross section.

The nonanalytic behavior of the real self-energy implies that the effective mass of the particles diverges
logarithmically at the Fermi energy
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One consequence is that there should be a large
surface contribution to the specific heat of the Fer-
mi liquid near T =0.

We now turn to the application of Eq. (1) to the
nucleon Green’s function in a nucleus. The details
of the calculation of IIRPA are given in Ref. 3. To
get some feeling for the applicability of the semi-

straightforward, because all integrations are bound-
ed. The integration for ReX involves unbounded K
and e integrations, and so the overall magnitude of
ReX is somewhat model dependent—in fact, for a
zero-range interaction, the integral diverges. We
evaluate the expectation value of X in a single-

infinite theory to the response in a finite system, we
show in Fig. 1 a comparison of the RPA response
for a typical wave number, K =0.3kg, with the
RPA surface response of the nucleus 2®Pb. The
corresponding spherical multipole in 2%Pb is L
= KR =3. In both response functions, there is a
peak at low frequency. While the overall behavior
of the response is reproduced including sum rules,
the shell effects of the finite geometry are of course
absent from the semi-infinite description. To calcu-
late = we integrate the response function with the
single-particle Green’s function g, using the rep-
resentation of g, in terms of the solutions of the
Schrodinger equation.” The computation of Im3 is

TABLE 1. Nonanalytic behavior of self-energy in Fer-
mi liquid.

Leading nonanalytic

Case Imzr ReX
Bulk modes?® [(e—ep|? (e—e€r)’In(e—ef)
Surface modes |e — ekl (e—er) In(e—€p)
Isolated spin® 0(e—e€p) In(e —ef)
aRef. 5. bRef. 6.
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particle wave function to extract a physical quantity.
We choose the wave function as an eigenstate of
the mean-field potential, with momentum perpen-
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FIG. 1. Comparison of the isoscalar octupole response
of 28Pp (full drawn curve) and the surface response of a
semi-infinite Fermi liquid (dashed curve). Both results
are expressed in terms of the square of the zero-point
amplitude of the surface position. The response of the
semi-infinite system was calculated for a finite momen-
tum transfer of K —3/R — 0.4 fm~!, compatible with
the multipolarity of the finite-nucleus response.
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dicular to the surface. The wave function is nor-
malized in the interior of the medium to

¢k~2—1/2(eikz+Rie—ikz)’ (7)

where R; is a reflection coefficient. The expecta-
tion of X, calculated as

(2)x
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has the dimensions of energy times length. In Fig.
2 is shown the calculated imaginary part of Eq. (8).
One physical quantity related to the imaginary self-
energy is the probability of the particle making an
inelastic collision with the surface. With our wave-
function normalization, this probability is given by

P =kT/€x ~ (kgTW/k)(0.04 MeV~! fm™1), (9)

where
I'=2Im(Z),. (10)

is the decay rate of the state. Numerically, the
probability of an inelastic reflection from the sur-
face has a maximum of 100% for hole states ~ 10
MeV below the Fermi energy. Very deeply bound
hole states are confined to the interior and do not
interact strongly with the surface, but the bulk
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FIG. 2. The imaginary part of the self-energy of a par-
ticle moving perpendicular to the surface of a semi-
infinite Fermi liquid. Results are shown as functions of
the initial energy of the particle, both for an interaction
with zero range along the surface (dashed curve), and for
a finite range of 1 fm (full drawn curve).

modes would become important at high excitation
energies. The strong surface absorption implies
that shell structure should be weak for hole states
away from the Fermi energy, as is found empirical-
ly. A more quantitative way to compare with
finite-nucleus properties is via I', the damping
width of specific single-particle states. A wave
function with momentum perpendicular to the sur-
face corresponds to an s wave in spherical
geometry, the normalization of the radial wave
function in 2°8Pb in the interior has the magnitude

lps|2= (1/R)|¢;1>= (0.1 fm~1)|¢, |, 1)

where R is the nuclear radius. The damping width
obtained from Eqs. (10) and (11) and Fig. 2 has a
peak of 2.3 MeV. Empirically, holes states have a
width of 2-4 MeV for excitation energies between 5
and 10 MeV, and become much broader at higher
excitation.® The calculated widths in 2°8Pb associat-
ed with surface mode.s9 are about 3 MeV for excita-
tion energies between 5 and 10 MeV, in qualitative
agreement with our result.

For particles above the Fermi energy, the surface
absorption is strong for barely bound orbits and de-
creases in the continuum. The continuum absorp-
tion is ~25% just above threshold. This is con-
sistent with the empirical behavior of continuum
nucleons. When a nucleon scatters from a nucleus,
the effects of the wave propagation through the in-
terior of the nucleus are readily apparent in the op-
tical description.'°

As discussed earlier, Re(Z) has an (e —ep) Inle
— eg| behavior near the Fermi energy giving an in-
finite slope at e=eg. The overall shape of Re(Z)
agrees qualitatively with the finite-nucleus calcula-
tions of Bortignon et al.!! In both models, Re(3)
has a sharp peak just above the Fermi energy, of
magnitude 1-2 MeV.

The effective mass of nucleons near the Fermi
surface has been the subject of much recent study.
There are two contributions to the effective mass
arising from the energy and momentum depen-
dence of 2. The energy dependence of the effec-
tive mass, Eq. (6), has been calculated in finite sys-
tems to have a peak m/m = 1.2 at the Fermi ener-
gy.> 1213 The nonlocality of the mean-field poten-
tial gives a contribution in the opposite direction, so
the overall effective mass is predicted to be close to
one. Empirically, the systematics of compound-
nucleus level densities demands an effective mass
in the range m"/m =1.2-1.4 (Bohr and Mottel-
son'* and Bertsch and Wul'’), giving a significant
discrepancy between theory and experiment. In our
description, the effective mass diverges at ep as
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FIG. 3. The contribution to the effective mass extract-
ed from the self-energy operator. The effective mass has
a logarithmic divergence at the Fermi energy.

shown in Fig. 3, and only an average over some en-
ergy interval has physical significance. Using the
normalization (11) and taking an energy interval
AE =4 MeV corresponding to the lowest-fre-
quency surface excitations, we find m/m=1
—ARe(2)/AE = 1.2 in agreement with the finite-
system calculations. Perhaps for the statistical
mechanics a more relevant energy scale is the tem-
perature. Typical temperatures for the compound
nucleus are of the order of 1 MeV, and over that in-
terval the effective mass is larger, m/m ~ 1.4.
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