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Chaotic Flow Regimes in a Convection Loop
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In our experiments on a loop of fluid heated with a constant flux on the bottom half and
cooled at a constant temperature on the top half, we have observed three chaotic flow re-
gimes: a globally chaotic regime whose essential features can be described by a one-
dimensional cusp-shaped map, a subcritical regime in which the flow can be either chaotic or
steady, and a transient regime in which the flow remains chaotic for a time and then decays
into a steady flow.

PACS numbers: 47.25.-c

In 1974 Gollub and Swinney' conjectured that
their experimental results on the transition to tur-
bulence in circular Couette flow could be described
by a low-dimensional chaotic attractor; however,
they were not able to identify any characteristics of
this attractor. In the intervening years a number of
techniques have emerged to determine the charac-
teristics of chaotic attractors from experimental
time series. 2 These techniques have been applied
to determine the characteristics of chaotic attractors
in a variety of physical systems; however, there
have been only a few hydrodynamic systems which
have been shown to be described by chaotic attrac-
tors. 3 The chaotic behavior of these systems is typi-
cally limited to a small parameter range and there is
little, if any, connection between the chaotic
dynamics and the underlying hydrodynamics. 4

We will show that the flow in a convection loop
heated from below is qualitatively described by the
nonlinear dynamics of the Lorenz models over a
wide range of parameters encompassing three dif-
ferent chaotic regimes. In a future publication6 we
will show the connection between the parameters of
the Lorenz model and the fluid dynamics parame-
ters.

The flow in a rectangular loop of fluid heated at
the bottom was first discussed by Welander7 who
showed that the flow would undergo oscillations
which increased in amplitude until the fiow re-
versed direction. Malkus and Howard considered a
circular loop of fiuid subject to a uniform tempera-
ture gradient and showed that the resulting equa-
tions were isomorphic to the Lorenz equations.
They made the simplifying assumptions that the
velocity and temperature were uniform across the
loop, that the fluid flow was opposed by a friction
force, which is proportional to the instantaneous

flow rate, and that the rate of heat transfer between
the walls of the tube and the surrounding fluid was
proportional to the temperature difference between
wall and fluid. When the temperature of the fluid
is expanded in a Fourier series in 8, the equations
for the low modes decouple from those of the
higher modes and the infinite set of equations can
be truncated without loss of information. 9

Creveling et al. ,
'o in previous experiments with

fluid loops using a constant heat flux over the bot-
tom half and a constant temperature over the top
half, observed a flow regime in which the fluid os-
cillated with increasing amplitude about the mean
flow and then reversed direction and resumed oscil-
lation. Both the analysis by Creveling et ai. 'o and a
subsequent one by Greif, Zvirin, and Mertol" iden-
tified a regime of unstable oscillations but did not
characterize the dynamics of this regime or identify
any other chaotic regimes. The boundary condi-
tions corresponding to the experiment violate the
assumptions which lead to exact truncation; howev-
er, we will show that the qualitative characteristics
of the flow can be described by the nonlinear
dynamics of the Lorenz model. The flow can be
categorized into five regimes: (absolutely) stable,
steady (clockwise or counterclockwise) circulation,
transient, subcritical, and globally chaotic. '2

Determination of flow regimes. The flow in—the
convection loop can be represented by the motion
of a point in an abstract three-dimensional state
space whose axes are the fluid velocity and the sine
and cosine Fourier components of the temperature
of the fluid (x, y, and z axes, respectively, in Fig.
1). Trajectories in state space correspond to flows
in real space.

The absolutely stable regime corresponds to a
fixed point (point A in Fig. 1) in state space. No
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FIG. 1. Schematic diagram of a trajectory in state
space corresponding to a transient state (see text).

fluid motion is observed and a steady temperature
field is maintained in the fluid. The transition to
steady circulation occurs when this state loses sta-
bility at a critical value of the driving parameter and
two stable steady solutions (fixed points 8 and C in

Fig. 1) bifurcate from it. This transition was detect-
ed experimentally by allowing the system to come
to equilibrium in the absolutely stable regime and
slowly increasing the heat flux until circulation was
observed.

In the transient and subcritical regimes the fixed
points are locally stable to small perturbations but
unstable to finite-amplitude disturbances. The
transient regime is characterized by states exhibit-
ing nonperiodic motion which abruptly decay to
steady circulation. This phenomenon arises in the
Lorenz model when two unstable periodic solutions
of large amplitude are born from a homoclinic orbit.
Each periodic solution rings one of the stable solu-
tions and its stable manifold effectively forms a bar-
rier tube (dotted line in Fig. 1) for trajectories.
There is a special trajectory'3 which all observable
trajectories pass close to. In the transient regime
this special trajectory passes through the barrier
tubes. Other trajectories which begin outside of
these tubes remain outside for a time, tk„' called
the kickout time. When these trajectories penetrate
a tube, they spiral into a fixed point. The trajectory
shown in Fig. I corresponds to a flow which re-
verses direction and undergoes three decaying oscil-
lations before steady flow.

In the subcritical regime, the space of possible
flows is divided into disjoint regions because the
special trajectory has moved completely outside the
barrier tubes. Trajectories which start outside the
tubes stay outside and are chaotic. Trajectories
which are inside a tube will decay to steady circula-
tion. Experimentally the transiton between the

transient and subcritical regimes was determined by
abruptly applying the heat flux and finding the
lowest value at which sustained chaotic behavior is
observed.

As the driving parameter is increased, the un-
stable periodic solutions shrink and the barrier
tubes enclose a smaller region of phase space. The
loss of stability of the steady solution occurs when
each unstable periodic solution merges with the
steady solution it surrounds. This transition corre-
sponds to a subcritical Hopf bifurcation of the
steady solution. The transition from the subcritical
to the globally chaotic regime was measured experi-
mentally by s/owly increasing the heat flux until
steady circulation became unstable and was replaced
by a chaotic flow.

The experimentally determined flow regimes are
as follows: Q & Q, , stable; Q, & Q & 4.1Q„steady
(clockwise or counterclockwise); 4.1Q, & Q
& 8.1Q„ transient; 8.1Q, & Q & 14.5Q„subcriti-
cal; Q ) 14.5Q„globally chaotic. 's

Experiment. —The experimental apparatus was
constructed to reproduce the results of Creveling
et al. 'o A loop, 76 cm in diameter, made from 2.5-
cm Pyrex tubing, was encased with a Plexiglas jack-
et over the top half and wrapped first with heating
tape and then with asbestos tape (to reduce heat
loss) over the bottom half. Water from a tem-
perature-controlled bath ( +0.05'C) was circulated
through the jacket; a Variac provided the constant
heat flux over the bottom half of the loop.
Thermistors with 1-sec response times were placed
at three, six, and nine o' clock. The temperature at
six o' clock, T6, is proportional to the cosine Fourier
coefficient of the temperature, and the temperature
difference between nine o' clock and three o' clock,
T9 T3, is proportional to the sine Fourier coeffi-
cient of the temperature. The output from the
thermistors was digitized by a 12-bit analog-to-
digital converter, stored in a microcomputer, and
later sent to a mainframe where it was digitally fil-
tered and analyzed. The working fluid was water.

Each chaotic flow regime has characteristics
which can be compared with the predictions of non-
linear dynamics.

Globally chaotic regime. —Figure 2 shows rep-
resentative traces of T9 —T3 and T6 in the globally
chaotic regime. A number of techniques have been
developed in recent years to analyze and character-
ize chaotic flows. Lorenzs plotted the amplitude of
the Nth maximum versus the amplitude of the
(N+ 1)st maximum and obtained a one-
dimensional cusp-shaped map which characterized
the dynamics. A topologically equivalent map can
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FIG. 3. A plot of t(N+1) vs t(N) where t(N) is the

time between the Nth and (N+ 1)st maxima in the time
series of T6.
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FIG. 2. Representative time series of voltages propor-
tional to the sine and cosine Fourier coefficients of the
temperature. A change in sign of T9 —T3 corresponds to
a flow reversal.

be obtained by plotting the time between the Nth
and (N+ 1)st maxima versus the time between the
(N+ 1)st and (N+ 2)nd maxima. If this plot
yields a quasi one-dimensional map, then the time
of the next maximum can be found by iterating the
map. In Fig. 3 we have plotted the experimentally
observed times between maxima measured by T6.
Although there is a considerable scatter, the points
fall on a one-dimensional cusp-shaped curve similar
to that of the Lorenz model. The scatter on the
right-hand side of the map is caused by contribu-
tions from two- and three-dimensional aspects of
the flow which are not included in the simplified
model. The larger scatter on the left-hand side of
map is caused by the presence of two closely spaced
branches which are not resolved. These aspects of
data analysis will be discussed more extensively in
Ref. 6. Maps constructed from time series in the
transient and subcritical regimes have a similar cuscusp
shape but differ in certain details.

Subcritical regime. —In the subcritical regime the
probability of observing a chaotic flow, P„ increases
as the driving parameter is increased. Experimental
values of P, were obtained for three values of the
(abruptly applied) heat flux; 0.05 at Q = 8.9Q„0.50 1J. P. Gollub and H. L. Swinney, Phys. Rev. Lett. 35,
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at Q = 9.5 Q„and 0.90 at Q = 11.1 Q, .
Transient regime If .t—he initial state of the sys-

tem is chaotic and the heat flux is abruptly
switched, changing the state of the system into the
stable regime, the system decays immediatel . If
he initial state of the system is chaotic and the heat
ux is abruply switched changing the state of the

system into the transient regime, 4.1Q, ( Q8.1Q„
the system can remain chaotic for a time, tk„and
then will decay. The kickout time has a distribution
o values for an ensemble of identical experiments.
Our experiments indicate that the mean kickout
time is 20 min and the probability of a given
kickout time decreases monotonically from zero
time in qualitative agreement with the numerical
studies of Yorke and Yorke. '

The ideas of nonlinear dynamics have been used
to establish experimental criteria for describing the
characteristics of the flow in a convection loop over
five regimes: stable, steady, transient, subcritical,
and globally chaotic. Transient and subcritical re-
gimes have not previously been identified in hydro-
dynamic systems.
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