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Order of the Finite-Temperature Phase Transition in the SU(4) Gauge Theory
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Using Monte Carlo methods, we conclude that the SU(4) gauge theory has a first-order
confinement transition at finite temperature. On a lattice with small timelike extent, the
bulk transition of the Wilson action drives the finite-temperature transition. We used an ac-
tion with plaquettes in the fundamental and adjoint representations in order to avoid the bulk
transition while keeping the lattice size manageable.

PACS numbers: 11.15.Ha, 05.70.Fh

The first-order nature of the finite-temperature
phase transition in the four-dimensional SU(3)
gauge theory' [in contrast to SU(2)] can be under-
stood in several ways. The original arguments,
based on Landau theory or on the renormalization
group, 4 depended on the invariance of the cube of
the order parameter under a global Z3 symmetry.
Among SU(N) theories, then, these arguments
treated N =3 as a special case: They made no pre-
dictions for the order of the transition for N & 3.

More recently, it has been argued5 that large-N
theories possess first-order transitions. It is intrigu-
ing to suppose that N = 3 is the border of the large-
N regime, i.e., that all theories with N ~ 3 behave
in accord with the large-N predictions. Calcula-
tionss based on mean-field theory in the strong-
coupling approximation support this hypothesis, as
does a model7 of the phase transition which likens it
to a percolation transition for N ~ 3. We have ob-
tained Monte Carlo data for the SU(4) theory which
fit this picture.

Our calculation was done on a lattice with time-
like and spacelike dimensions N, =2 and N, =5.
Study of the finite-temperature transition on such a
small lattice is complicated by the presence of a
bulk phase transition for the Wilson actions at

pf =10.2. As discussed by McLerran and Svetit-
sky, s the finite-temperature transition occurs when
the confinement length g, set by the string tension,
crosses the scale set by the inverse temperatureT, which is N, in lattice units. While the bulk
transition has nothing to do with confinement, the
confinement length does change discontinuously
there; if the discontinuity makes ( cross T ', the
bulk transition will bring on a first-order confine-
ment transition. We find that this is indeed the
case when N, =2.

The trouble is that such a bulk-driven confine-
ment transition may have nothing to do with the
behavior of the system in the continuum limit. As
one studies systems with increasing N„ the finite-
temperature transition will move toward weaker

coupling so as to yield a finite physical transition
temperature. The bulk transition, on the other
hand, will stay at finite bare coupling, and the two
transitions will decouple. The finite-temperature
transition, when it is no longer driven by the bulk
transition, may then become continuous, and
remain so in the continuum limit. It is this possibil-
ity which must be investigated. '

In order to avoid the bulk transition of the Wil-
son action, we have used the more general mixed
fundamental-adjoint action. In the next section, we
review its zero-temperature phase diagram and
display our conjecture of how the finite-temper-
ature transition is superimposed on it. Thereafter,
we present Monte Carlo data for the Wilson theory,
which show that the bulk transition drives the
finite-temperature transition. We then present data
for a mixed action, which exhibits a clear first-order
confinement transition in the absence of the bulk
transition. We add some remarks in the final sec-
tion, and our calculation is described in an appen-
d1X.

Phase diagram of the mixed model. —The mixed
action for the SU(X) gauge theory is given by the
usual sum over plaquettes

S = —X Re trUv+ itrU~ (

N —1
Ip

Based on study of the mixed-action SU(2) and
SU(3) theories, "' the mixed-action large-N the-
ory, 's and the Wilson-action SU(4) theory, s the
phase diagram consisting of the solid lines in Fig. 1
has emerged for the SU(4) theory at T = 0. As dis-
cussed in the introduction and demonstrated in the
next section, the discontinuity in the confinement
length g where the pf axis crosses the phase boun-
dary is sufficiently large to bring about the finite-
temperature transition when N, = 2. As one follows
the phase boundary towards the critical point, this
discontinuity should decrease, until the two phase
transitions decouple as indicated in the figure. The
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FIG. 1. Presumed phase diagram for the mixed-action
SU(4) theory on an %,=2 lattice. Sohd lines are bulk

first-order transitions, ending in a critical point. The dot-
ted line is the conjectured curve of the finite-temperature
transition where it is decoupled from the bulk transition.
The dashed line is P~ = —Pf/2.

bulk phase boundary ends at the critical point, awhile

the confinement phase boundary should continue in
the negative P~ direction, roughly along one of the
curves of constant string tension discussed by
Bhanot and Dashen. '

If we were to increase N„we should see the con-
finement transition line moving to the right, until
for sufficiently large N, the two transitions would
decouple entirely and the situation would be as
shown in Fig. 2. In the interest of faster computa-
tion, we have chosen to avoid the bulk transition by
working along the dashed line in Fig. 1, where
P„= —Pf/2. According to Ref 13, th. is line should
bypass the critical point, and we show in the next
section that the bulk transition does not appear in
the region of interest.

Monte Carlo data. —The order parameter for the
finite-temperature phase transition is the Wilson
line

FIG. 2. As in Fig. 1, but with W, large.

that the bulk transition and the finite-temperature
transition are identical on the Pf axis.

Proceeding to our calculations on the P„=
—

P~/2 line, we present in Fig. 4 data for (P) and

( W ) near the finite-temperature transition. Rath-
er than present hysteresis data, we show values for
the equilibrium phases only, where these have been
determined from the mixed-start runs shown in Fig.
5. These runs show clearly the first-order nature of
the transition.

Finally, to show that the bulk transition is not
present, we show in Fig. 6 the results of heating and
cooling runs for an N, = 4, N, = 4 lattice in the
neighborhood of the transition found for N, =2.
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%e display in Fig. 3 our Monte Carlo data for the
average plaquette

P =1—N 'RetrU~

and for the mean square magnetization
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tn the neighborhood of the transition on the pf
axis. There is marked hysteresis in both observ-
ables. At Pf = 9.8 and Pf ——10.0, nonzero magneti-
zation in ( W2) is always associated with the lower
values of (P), zero magnetization with the upper.
At pf =9.5 and pf =10.S, we observed tunneling
from the metastable to the equilibrium phase, in
the course of which ( W2) switched phases during
the same passes as (P) . These observations show
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FIG. 3. (a} Average plaquette (P) and (b) magnitude
of the order parameter ( W2) along the pf axis on a 2&& 5
lattice. Lower points in (a) and upper points in (b) are
from runs with decreasing Pf, their counterparts are from
runs with increasing pf.
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FIG. 5. Mixed-start runs near the phase transition in
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FIG. 4. (a) Average plaquette (P) and (b) magnitude
of the order parameter ( W ) along the line p~ ———pf/2.

No hysteresis is evident, showing that no bulk tran-
sition was left behind when the finite-temperature
transition indeed moved away to weaker coupling.

It may be argued that our first-order transition,
while not coincident with the bulk transition, is af-
fected by its proximity. Certainly we do not claim
to have approached the continuum limit, where all
effects of the bulk transition will be insignificant. '

However, a change in the order of the transition as
N, is increased would be a very interesting effect in
itself. If, in place of varying N„one were to make
the gauge couplings anisotropic, a change in the or-
der as one moved along the phase boundary would
occur at a tricritical point. The tricritical exponents
would not fit into the simple picture of Ref. 4, and
would presumably be due to competing interactions
in the effective action for the Wilson line.

We thank Paulo Caldas for an enlightening dis-
cussion. This work was supported in part by the
National Science Foundation under Grant No.
PHY82-09011. One of us (B.S) thanks the IBM
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FIG. 6. Heating (crosses) and cooling (circles) runs on

a 4x 4 lattice with p„= —pij2.
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Appendix. —Our computer program employed a

Metropolis algorithm, with ten hits per link per pass
and an acceptance between 0.5 and 0.6. The data in
Figs. 3 and 4 are averages over between 200 and
400 passes after reaching equilibrium. For the heat-
ing run (that with decreasing pf) in Fig. 6, we start-
ed at pf ——16.5 with 600 passes from a cold start,
and then ran 100 passes at each pf value, averaging
over the last 50; the cooling run (that with increas-
ing pf) was similar.

The program for the pure Wilson action was writ-
ten in FORTRAN and C and ran on a VAX-11/750;
it did ten hits on a link in 250 ms. The program for
mixed action ran on a Floating Points Systems
FPS-164 Array Processor, and did ten hits on a link
in 8.25 ms; it was written in FORTRAN and used
library subroutines for matrix multiplication. The
mixed-action algorithm was of course slower than
that for the Wilson action; in comparing runs for
the same algorithm we found that the Array Proces-
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sor was SO times as fast as the VAX.
Rote added. —Papers have reached us from

Gocksch and Okawa' and from Wheater and
Gross' which report a first-order transition for the
fundamental action with N, =4, where it appears
that the two transitions have decoupled as in Fig. 2.
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