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We study a one-dimensional random Kronig-Penney model in the presence of a constant
electric field. We rigorously prove for the first time the existence of a transition between a
regime of extended states for large field and a regime of power-localized states for small
field. There the large-distance behavior of the states is ~x~

' ) with a(F) —C/F for small
field F, confirming a numerical computation of Soukoulis et al.
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Disordered systems have been and are being ex-
tensively studied because of their relevance to a
large variety of physical situations. ' lt has been
proven recently that, as predicted by Mott and
Twose, one-dimensional (1D) Schrodinger Hamil-
tonians with disorder possess a complete set of ex-
ponentially localized states. Much less is known
about such systems in electric fields. Recently,
Soukoulis et al. studied the Kronig-Penney model

oo

2
+ X V„S(x—n) —Fx,

dx

exponentially localized states (nevertheless the lo-
calization length diverges at all energies of the form
E=k2m2, k an integer). We have proven that for
small F, (1) has a complete set of localized states,
decaying of course as exp( —cF' '~x ~'12) for
x —~, but more interestingly decaying as a
power for x + ~, and one has, for example,

ctlxl '"(Ill ll(x) ~ c21x1 "; (2)

where"

where we shall take here, for simplicity, the V„ to
be independent, identically distributed random vari-
ables with a distribution B (E)dE, with all moments
finite and ( V„) = 0. They performed numerical cal-
culations of a transmission coefficient on an approx-
imate version of the model; it presents a power-law
decay, suggesting (but this is known to be some-
times a dangerous extrapolation) that H had local-
ized states, but ones which are only power-law lo-
calized (i.e., with eigenfunctions decaying as
~x~

t l at +~) rather than exponentially local-
ized. Moreover, their calculation suggested that
n(F) diverged as F ' for small F. Such behavior
had also been theoretically predicted by Prigodin5 in
the case of an electron in a white-noise potential
and an electric field.

These results are somewhat surprising since Ben-
tosela et al. had studied the model where
g„+ V„S(x —n) is replaced by an arbitrary
(disordered) potential V, which is sufficiently
smooth; they proved that such a model has no 1o-

calized staes —in fact, the initial wave packets
would be uniformly accelerated. Given this fact,
the naturalness of model (1) for calculations, and
the approximate nature of the arguments in Ref. 7,
it seems useful to confirm or refute the conclusions
of Ref. 7, with the tools of rigorous mathematical
physics.

When F = 0, the model (1) has a complete set of
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where the ct„, P„, and y„will be functions of Airy
functions. The important point is that y„wi11 be
mainly a product of two Airy functions, each of
them decaying as n '/ at +~. Hence y„will
behave at + ~ as n ', and more precisely one
finds for n large and modulo oscillations that

F—&/2 —&/2 (4)

By studying a„and P„, one can show that the quali-
tative behavior is the same as if Eq. (3) were re-
placed by

tlt(n +1)
ttt(n)

y( )
1 0 ili(n —1) '

which is the equation associated with an Anderson

and the diffusion constant vanishes. For large F in
contrast, all states are extended.

Let us now give an idea of how one can get (2).
Let i' be a solution of the equation Httt=EP, H
given by (1). Since we can integrate the equation
between the 5 functions, we can get a relation
equivalent to Hilt=Eilt but involving ili only at
points x = n. One then gets the following recursion
relation on the ili(n):
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model with potential n '~ V„at site n and coupling
constant I' ' . From this we can understand why
(1) has power-localized states for F small. Here is a
first heuristic argument: Since wave functions
represent standing waves, we can imagine the wave
being set up by transmissions from a central peak.
In the approximation of ignoring multiple reflec-
tions and approximating the randomness of poten-
tials at distinct sites by independent reflections, we
see that

y(n) —Q(( —r, ),
j~]

where r~ is the reflection probability at site j. For
weak coupling, the Born approximation says that r
is proportional to the square of the potential

strength, so that

n

y( ) —gH- (F )

Having shown this heuristic argument, let us just
say that the upper bound of this kind, stated in Eq.
(2) for small field, can then be proven rigorously"
with use of techniques analogous to those of De-
lyon, Kunz, and Souillard and Simon. '

Let us now turn to the lower bound stated in Eq.
(2) and to the absence of localized states for large
enough field. Let (t)+ and (t) be two solutions of
—(t)" —Fxg=Ep with Wronskian equal to 1. We
can write any solution Q of (1) on an interval
(n, n+ 1) as (t)(x) = a„@+(x)+ b„p (x) and one
deduces readily the recurrence relation

an+1
1+ V„

n+1

(t + (n)(t (n)
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so that

Since the (t)+(n) are of magnitude F 'l n 'l, the
matrix M„ is of magnitude (Fn) '/2. Furthermore,
since TrM = detM = 0, we have det(1+ V„M)v) = 1

for all n. In order to get a lour bound on the solu-
tion of (8), we use the fact that it is sufficient'3 to
get an upper bound on the growth of product of
transfer matrices: Indeed we have

volved calcuation shows that for any integer p

(g„(E)~) ~ c,n"

& lg. (E) —g. (E') I'& ~ c3IE —E' I'n '""'".
By using an idea similar to the one used by Kolmo-
gorov in the study of stocastic processes, '" one can
deduce" from these inequalities that for almost all

choices of V (i.e., with probability one),

(E) g 4/P + C6(P)/F

b„

ay

bi

uniformly for E in bounded sets. This proves
power lower bounds on

but A„ is a 2 & 2 matrix with determinant 1 and thus

, whic»mplies bn

—II jI(I+ V;M;) II
n, i~1

and thus on (t(:

—( &/4+ 4/p + C6(p)/F]

Fixing now the field I', and making the dependence
on the energy E explicit, we set

g„(E)= Tr(P„'P„), P„= ],I(1+ V;M;). (10)

If angular brackets denote averaging with respect to
the disorder, because of the independence of the
V 's an easy calculation shows that (g„(E))
~ cin with c2 independent of E and ci indepen-

c2/F

dent of E on bounded sets. A slightly more in-
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By large enough choice of p, this also implies the
absence of localized states for large F, and in partic-
ular shows that the spectrum is then purely continu-
ous. This, in turn, implies the vanishing of the in-
verse participation ratio by the general arguments of
Kunz and Souillard. 3

In the same way as we studied model (1) here,
we can also study a tight-binding model

(H(II) (n) = (l)(n + 1) + P(n —1)

+ () /n. ) V„y(n)
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and show that, in the unperturbed spectrum (i.e.,
the interval [ —2, + 2]), it undergoes, when n = —,',
a transition from a pure point spectrum with
power-localized states to a continuous spectrum
with nonlocalized states under variation of the cou-
pling constant A or the energy. We do not know if,
when continuous, the spectrum is absolutely con-
tinuous or singular continuous, or if particles have
diffusive behavior or not. The same question is
pending for the case of the Kronig-Penney model
with large electric field. For ct ( —,', (ll) has pure
point spectrum, ' and for o. ) —,

' it follows from the
techniques of the present paper that the spectrum.
within [ —2, 2] is continuous.

As a conclusion, we have proven a transition
from a regime of extended states to a regime of
power-localized states in model (1) and model (11)
with o. = —,. We mentioned above that in the elec-
tric field case, if we have a smooth potential, the
results are very different: One may ask which case
is relevant, and whether the Kronig-Penney poten-
tial is only of academic interest, introduced for its
analytic simplicity. This question is of interest since
there are nowadays experiments on thin wires, e.g. ,
made of GaAs, which are thin enough to present
1D behavior at low temperature and one may see
there, for example, the crossover from 2D to 1D
behavior. ' In some of these ~ires, the variations
of potential at the impurities is much larger than
the energies involved by the weak electric field
used to measure the conductivity; the Kronig-
Penney model is then the natural relevant model in
these cases.

We finally mention that, while writing this
Letter, we learned that Bentosela, Grecchi, and
Zironi have developed numerical studies of model
(1) and obtained results's beyond those of Ref. 6;
they no longer compute a transmission coefficient
but compute directly the behavior of eigenfunc-
tions, and their numerical studies agree with our
analytical results.
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