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Scaling Relations between Correlations in the Liquid-Vapor Interface
and the Interface Width
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Long-ranged density correlations, varying on the scale of the capillary length L„exist in
the liquid-vapor interface in a weak gravitational field. A scaling hypothesis, similar to that
made near the bulk critical point, predicts that in dimensions d ( 3, the interface width
8' ~ as L, ~. For d ) 3, 8'can remain finite provided there is power-law decay of
correlations for separations less than L, . These results are consistent with capillary-wave
theory.

PACS numbers: 68.10.Cr, 05.70.Jk, 64.70.Fx

As first pointed out by Wertheim, ' one can estab-
lish the existence of very long-ranged density corre-
lations parallel to the planar interface of a liquid in
equilibrium with its vapor in an (arbitrarily weak)
gravitational field2 Q,„(z)= mgz. The range of
these correlations at very large horizontal separa-
tions is given by the capillary length

L, = [o./mg (pI —p„) ] ' 2.

L, is about 1 mm for argon at its triple point in
earth normal gravity; in principle we can imagine
the gravitational constant g arbitrarily small and
hence L, arbitrarily large. 3 Here o. is the surface
tension, pI and p„are the number densities of the
coexisting bulk liquid and vapor phases, and m is
the particle's mass. We require always that
L, » (~, the bulk correlation length. These
anomalous correlations exist only in the interfacial
region, whose width W is determined by the ap-
proach of the density profile p(z) to its limiting
values pI and p„. For convenience we choose the
chemical potential so that the Gibbs dividing sur-
face is at the z = 0 plane. 3

The behavior of the interface width W has been
the subject of much discussion recently. Classical
ideas, 3 5 generalized by Widom3 4 to give relations
between the critical behavior of the surface tension
and bulk thermodynamic properties, assume the ex-
istence of an "intrinsic" profile whose width W is
essentially independent of gas g 0+. Wertheim
made such an assumption in his discussion' of the
long-ranged interface correlations. On the other
hand, exact results for various lattice models in two
and three dimensions strongly suggest that no
limiting profile should exist. Weeks8 offered a
resolution based on capillary-wave theory for these
two seemingly contradictory pictures but this too
has been questioned. 3 5

Here I show that very simple scaling ideas imply
that there is an intimate connection between the na-

ture of the long-ranged correlations and the be-
havior of the interface width that allows us to
deduce new properties of each. If the scaling hy-
pothesis is correct, then in bulk dimensions d ( 3,
the interface width W must itself diverge as
L, ~: The existence of the long-ranged correla-
tions requires the divergence of the interface width.

For d & 3, the interface width W can remain fi-
nite as g 0+ in accord with the classical picture;
in that case correlations parallel to the interface
must decay as r ~~ 3~ for r ((L, . Here r is a
d —1 dimensional vector in the interface "plane. "
As noted below, this behavior is completely con-
sistent with the predictions of capillary-wave
theorys 9 and these results give additional support
to the physical picture of the long-ranged interfacial
correlations that it provides.

The analysis begins from the definition in the
grand ensemble of the pair correlation function of a
fluid in an external field P,„(R)':

H(Rt, R2) = Sp(Rt)/8[pp, —pp, „(R2)]. (2)

Here p(Rt) is the probability density for finding a
particle at R~, p, is the chemical potential, and
p= (kaT) ' with T the temperature. Specializing
to the case of an external field P,„(z) depending on
z only, H has the form H(z~, z2, r&z), where
rt2 =

~
r t

—r 2~, and r; is the projection of R, in the
(d —1)-dimensional interface plane. Further, for
an isotropic fluid a displaced field @,„(z+e) im-
plies exactly the same displacement p(z+ e) in the
singlet density since $,„ is the only field inducing
inhomogeneities in the fluid. As e 0 we have
then from Eq. (2) and the definition of the func-
tional derivative the exact result'

p'(z)) = —
Jl d 2„I d 'r H(zt, z2, r)pp,'„(z2),

(3)

valid for all d and for one- as well as two-phase sys-

2160 1984 The American Physical Society



VOLUME 52, NUMBER 24 PHYSICAL REVIEW LETTERS 11 JUNE 1984

tems. Here p'(z) = dp(z)/dz.
In order to insure that the field has only a very small effect on the bulk phases, we choose a "truncated"

graviational potential P,„(z)=mgz, —zz ~z ~zii, and $,„(z)=sgn(z)mgzz otherwise. Here ziv & 0 is
some (large) value of z chosen so that limgzir 0 as g 0. Using this in (3) and integrating over zt, we
obtain the basic equation

p oo ~~w d-1
p( —~) —p(~) =PmgJ dzt„dz2J dd r

In a one-phase system with average number den-
sity p, note that the right-hand side of (4) ap-
proaches 2mgz~p2K, where use has been made of
the fluctuation definition3 of the isothermal
compressibility ~. Thus Ap =p( —~) —p(~) van-
ishes as g 0+, as one would expect.

In contrast, if p, = p, ,~ appropriate for liquid-vapor
coexistence, then an arbitrarily weak field will in-
duce macroscopic phase separation. Hence the
left-hand side of (4) approaches the finite value
b,p= pi p„a—s g —0+. As recognized by Wert-
heim, ' Eq. (4) can continue to hold for arbitrarily
small g only if there are long-ranged correlations in
H which increase as g decreases. '

To examine this point more quantitatively, we

make a scaling hypothesis for the large-distance
behavior of the correlation function H in analogy to
the scaling theory for the pair correlation function
near the bulk critical temperature T, .3'2 The two

problems are very similar: As T T„bulk -critical
fluctuations are driven by the diverging correlation
length (it, and in the interface as g 0+, long-

ranged correlations arise from the diverging capil-

H(z, ,z, ,r). (4)

larly length L,.
For horizontal separations r » (tt, the bulk

correlations are exponentially small and only the
anomalous interface correlations remain. We as-
sume that H then has the form

t

Z$ Z2 I'
H(zt, z2, r) —r Ht

~c

where ti ~ 0 is an exponent to be determined later
giving the decay of correlations for (a « r « L„
and Ht is a scaling function of order unity which
tends to zero for large values of its arguments. The
dependence of Hi on z/Win (5) insures that the
anomalous correlations, scaling with L„are con-
fined to the interfacial region. However, we as-
sume no necessary connection between the be-
havior of L, and of W.

We take z~=n W, where o. is some constant.
Substituting Eq. (5) into Eq. (4) (thus assuming the
divergent contribution to the integral comes at large
r), we find after changing variables that as g 0+

p oo

pi —p„—pmgL, W J d~ 'xJ dttJ~ dt2x Ht(t&, t2, x). (6)

The integral is a constant independent of g, and so
from Eq. (1) we have the final result, valid as
g~ 0+.

O' L ~ —const.

Since 8 must be nonnegative [otherwise correla-
tions in Eq. (5) would grow for (tt « r « L, ],
one concludes from Eq. (7) that for d & 3, Wmust
diverge as L, ~. This scaling argument alone
does not allow us to deduce the value of 8 (just as rt
is undetermined in ordinary critical-point scaling)
but capillary-wave theorya 9 and exact results for
various lattice models 7 agree that ii=0 and that
for d = 3, W2 varies as ln L, . It follows that

gz~ 0 as g = 0, so that the field is indeed weak as
assumed.

On the other hand, Wean remain finite for d & 3
as g 0+ if H=d —3. Thus the existence of alge-
braic decay of interface correlations for r « L, is
predicted in interfaces of higher dimensions if the z ( r ) = X-, h ((j)e" ' ', (8)
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interface width Wremains finite. This is the inter-
face analog of the r td 2+ "1 decay of the bulk pair
correlation function3'2 near T, for r « (tt.

The derivation of the scaling relation (7) is
directly analogous to that leading to the bulk
critical-exponent relation (2 —q)/v = y.3'2 Given
the plausibility of the basic scaling hypothesis, I ex-
pect both results to be valid in all dimensions.

It is interesting to compare these general predic-
tions to those arising from capillary-wave the-
ory. 3 8 9 At wavelengths much greater than (tt, the
work, hE, required for small distortions of the
Gibbs dividing surface can be estimated from ther-
modynamics and consists of two parts: work against
the gravitational field and work given by the (mac-
roscopic) surface tension times the change in area.
Representing the vertical displacement of the dis-
torted surface at position r by the Fourier series
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we have

~a=-,'~Ld-'X h(q)h(-q)(L +q'), (9)

where Ld is the system's volume which will tend to
infinity. As argued in detail by Weeks, s the sums
over q should be cut off at q,„=m/(it, since only
long-wavelength distortions are properly described
by Eq. (9) with o. the macroscopic surface tension.
Capillary-wave theory assumes that the long-

wavelength fluctuations integrated over in the
equilibrium partition function8 can also be described
with use of (9) as the proper weight in the
Boltzmann factor.

One measures 9 of the interface width involves
the mean-squared fluctuation in z ( r ); when fluc-
tuations are large this will dominate any "intrinsic"
contribution' in determining the decay at large z of
p(z). We can compute this and other measures of
the width in terms of the height-difference correla-
tion function,

fO i]

2I.

by using (8), taking the large system limit, and not-
ing that the quadratic nature of (9) implies that
(h(cf)h( —gj) = [pcrL '(L, +q2)) '. Inte-
grals similar to (10) arise in the Ornstein-Zernike
theory of the bulk pair correlation function near
T„3'2 so that the discussion can be brief.

We define the fluctuation width Wz —= G(~)
from Eq. (10) in terms of the mean-squared height
difference between widely separated parts of the in-
terface. For d & 3, the value of W' from (10) is
dominated by the small-q behavior and the re-
striction on q,„can be ignored. Equation (10)
then implies the scaling law

W„' L;" " (d&3)
consistent with (7) for 0 = 0. A more careful treat-
ment gives W ~ ln L, for d = 3.8 9 Clearly these
divergent contributions dominate any intrinsic part
of W.

For d & 3, the cutoff at
~ q ~

= m/(e cannot be ig-
nored in computing 8', but there is no longer a
divergence at small q, so that the g 0 limit can be
taken. Scaling out the pit dependence we then find
a finite value for W:

(12)

Equation (12) is consistent with the classical picture
of an interface whose width varies as (e as T T,
(but with (it « L, as always) if we make use of
the Widom hyperscaling relation po-gtdt
= const. 3

However, this happy state of affairs holds only
for 3 & d & 4, since hyperscaling is incorrect3 for
d & 4. For d & 4 as T T„ the interface becomes
increasingly stiff and the long-wavelength interface
fluctuations measured by W make a negligible
contribution to the interface width, which is dom-
inated by "intrinsic" contributions. This of course
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does not imply a failure in high dimensions of
capillary-wave theory to describe long-wavelength
fluctuations, and in particular to describe the long-
ranged correlations in H(zt, zz, rtz), but merely re-
flects the negligible contribution of W to the true
interface width near T, .

For d & 3, the classical picture of an intrinsic pro-
file fails because of fluctuations between widely
separated regions of the interface as measured by
W . However, as argued by Widom, 4'4 it is fluc-
tuations between regions of the interface separated
by distances of the order pit which represent the
elementary density fluctuations of importance near
T, . Indeed one can verify for all d & 4 that the lo-

cal width W~z —= G(pit) is independent of g as

g 0+; and that W~ is proportional to pit near T, .
Unfortunately W& is not what is measured from

the profile p(z) and a more precise and unambigu-
ous definition of an intrinsic width has yet to be
given. '3'5

Finally we note that capillary-wave theory can be
used to estimate the pair correlation function H. s It
predicts that H(zt, zz, r) with fixed zt, zz in the inter-
facial region varies as 1 —G (r)/G (~) for r» pit. 8'6 Equation (10) then shows that H de-
cays as exp( —r/L, ) for r » L, in all d. For
(n « r « L, we find H~ (L 3 d —r3 d)/

(L) d 1). This give—s the r td 3~ decay for
d & 3 already deduced from Eq. (7) for finite W.
For d = 3, there is a crossover logarithmic form, 8

and finally behavior consistent with 8 = 0 for
d & 3.'7 (Note that capillary-wave theory predicts
the absence of a clustering property for the inter-
face pair correlation function for d ~ 3 as well as
the divergence of the interface width. ) Thus
capillary-wave theory agrees with all scaling predic-
tions and provides us with a physical picture which
shows why correlations parallel and perpendicular to
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the interface are coupled together. Further discus-
sions of these results and implications for the direct
correlation function in the interfacial region will be
given in a sepearate publication. '"

I am grateful to David Huse, P. C. Hohenberg,
and Wim van Saarloos for helpful discussions.
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