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Percolation on Elastic Networks: New Exponent and Threshold
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Bond percolation on elastic networks involving nearest-neighbor forces is studied by
numerical simulations, With purely central forces, the bulk and shear moduli go to zero,
with an exponent f, and at a threshold p .., which are significantly higher than the ex-
ponent ¢ and threshold p . of the corresponding purely isotropic force or the equivalent
electrical conduction problem. An interesting crossover is observed when both central
and isotropic forces are included.

PACS numbers: 62.20,-x, 63.70.+h, 64.60.Cn

de Gennes'® pointed out that the elastic modulus
of a gel, modeled by an isotropic force constant,
is analogous to the electrical conductivity of an
electrical network. In this paper we show strong
evidence that the ceniral-force elastic percola-
tion problem belongs to a new universality class.

de Gennes’ results are based on a lattice perco-
lation model for gelation without solvent.'™ 1In
this model, each lattice site represents one poly-
functional unit. Two reacted neighboring units
are linked by a bond. When the fraction p of the
reacted bonds exceeds a critical value p_, a gel
is formed, corresponding to the formation of an
infinite cluster in the percolation problem.*

The elastic forces between the reacted nodes
give rise to a random network of elastic bonds.
We describe the elastic forces by the Born mod-
el.’ In this model, the potential energy of the
lattice is given by
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Here ﬁi and ﬁj are displacements of node ¢ and
node j; g;;=1 for the bonds that are occupied with
a probability p, and g;;=0 for the bonds that are
empty with a probability 1-p; and, #;; is the
unit vector from node ¢ to node j. Despite its
difficulty with rotational invariance® when 8 is
nonzero, Born model (1) is a useful practical
model which is qualitatively correct in many in-
stances.™® The purely isotvopic Born model,
i.e., B=a in (1), reduces to a scalar problem,
and, hence, to the usual universality class of the
conductivity problem, as noted by de Gennes.®

A far more interesting problem arises when
such a reduction to the scalar model is %ot possi-
ble. The simplest example of this is offered by
the model in which the nearest-neighbor forces
are central, i.e., when =0 in Eq. (1). Thus,
forces are involved only when a bond stretches
or contracts, just like an ordinary spring. The

purely central-force Born model is rotationally
invariant. The often used simple hypercubic
lattices have no shear rigidity for any p and no
bulk rigidity for any p <1 with nearest-neighbor
central forces. Therefore, we study three-di-
mensional (3D) face-centered cubic (fce) and 2D
triangular lattices. ‘

We determine numerically the bulk modulus K
in 3D. For the 2D triangular lattice there are
only two independent moduli, K and the shear
modulus N; and we compute both. For the case
of purely central forces, 8=0, we find as p ap-
proaches p ., from above that

K7N~(p ".bcen)fy [3:0. (2)

For the purely isotropic case, a =4, one finds
that!

K,N~(p=-p.)t, a=8, (3)
where, for the 2D triangular lattice,

Dcen=0.58, f=2,4+0.4;

p,=0.3473 t=1,220.3, @
and for the 3D fcc lattice,

Deen=0.42, f=4.410.6;

p;=0.119, ¢=1.6+0.3. (5)

The values of ¢t were estimated by us on the same
network with a =8, as a check of our program,
and agree well, within the error bars, with the
commonly accepted best estimates: =1.3 in 2D
and £=1.8 in 3D for the conductivity exponents,®™’
and with the latest estimates!* ! of ¢, which are
somewhat higher. In estimating ¢, we used the
known values of p,, as is customary.®~'"
Because of the difference in the exponents f
and { we propose that the central-force elastic
percolation problem belongs to a different uni-
versality class from that of the conduction prob-
lem. This, in our opinion, reflects the differ-
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ence in symmetry properties of the Hamiltonian
when 8=0, which is intrinsically of vector na-
ture, as opposed to that when o=, which is
essentially of scalar nature [x,y, 2 equations de-
couple, see Eq. (6) below]. This difference can
be likened to the difference between the Heisen-
berg model and the Ising model in the magnetic
context.

Admittedly, the central-force nearest-neighbor
model is oversimplified, but it suffices to show
the existence of a new universality class. Fur-
thermore, a crossover behavior near p ., will
be seen when central forces dominate,

A practical, and qualitatively correct, way to
include the bond-bending forces is to use the
Born model, Eq. (1).°7® The crossover behavior
can be easily illustrated in this case. In Fig. 1,
we show K versus p from the results of simula-
tions, when B/a=0.1. We see that when o >8,
there is strong crossover behavior from isotrop-
ic-force-like behavior near p =p  to central-
force-like behavior near p =p .. FOr p <p cen,
the noncentral forces provide the rigidity to the
lattice, and near p ., which is much smaller than
D cens the isotropic forces should dominate, Thus,
near p., one expects the exponent to be {. Num-
erical estimate of the exponent for the case S/«
=0.1 yields the value ¢{=1.2+0.3, supporting our *°
intuitive expectation.

Next consider the explicit differences between
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FIG. 1. Bulk moduli vs p for the cases when the force
is purely central (3=0), and when the noncentral force
is small (3/a=0.1), for the 2D triangular lattice of
946 modes. A strong crossover is observed near p ..,
in the latter case. Inset shows one log K vs log(p —p ..p)
plot.

the electrical conduction and the purely central-
force model. For the purely isotropic Born force-
constant model, a=pin Eq. (1), the uth com-
ponent of force on the atom ¢ is given by

F =820, -U;) 8. (6)

For the interior nodes, F;,=0 for each compo-
nent u=1, 2, and 3. Equation (6) is identical to
Kirchhoff’s equations on an electric network,
when U;, and U, are interpreted as the voltages
and g the conductance, and F;, the externally in-
jected current into node ¢, Thus, the equation for
each Cartesian component maps onto a scalar
Kirchoff’s equation. In the case of central forces
only, =0, the uth component of force on the
atom ¢ is given by

Fiuzazi[(ﬁi_ﬁj) i 1 (7i) gy (M

For interior atoms, F;,=0, but the different Car-
tesian components U;, (=1, 2, 3) in Eq. (7) do
not decouple, and hence do »ot map onto the
scalar electrical problem. Strictly speaking, the
fact that Egs. (6) and (7) do not map onto each
other does not prove that the central-force elas-
tic problem and the electrical network problem
belong to different universality classes.

That the threshold p ., can be different from p
is perhaps not so surprising. For example, one
can envision an infinite cluster in which there
exists a node which has only two nonstraight
bonds connected to it. Because with purely cen-
tral forces, the bonds can pivot freely without
costing any energy, this structure is not able to
transmit any elastic forces, i.e., K,N=0, al-
though the structure is definitely connected.

Above p ., , there is a part of the infinite clus-
ter which participates in transmitting the elastic
forces. This structure is analogous to the back-
bond of the usual percolation cluster,™ i.e., the
part of the connected network that participates in
carrying current. Clearly, with central forces
only, the bonds that do not stretch or compress
are equivalent to dead ends. In Fig. 2, we have
identified by the solid lines those occupied bonds
that are either stretched or compressed. The
dotted lines show the occupied bonds that are
neither stretched nor compressed. The cluster
formed by the solid lines gives the central-force
“pbackbone.” For clarity, we show only a part of
the network which was subjected to a hydrostatic
pressure,

To continue with these illustrations, consider
a simple cubic lattice with central forces only.

It is well known that the shear modulus is identi-

217



VOLUME 52, NUMBER 3

PHYSICAL REVIEW LETTERS

16 JANUARY 1984

FIG. 2. Simulation of displacements of a 2D tri-
angular lattice subjected to a hydrostatic pressure,
The occupied bonds that stretched or shrank are shown
by the solid lines and other occupied bonds by dotted
lines, The rigid elastic backbone is given by the con-
nected network of solid bonds. For clarity only a small
portion of the network is shown.

cally zero in this case. One can also show that
the bulk modulus goes to zero when an infinites-
imally small fraction of bonds are missing, i.e.,
P cen=1 in this case.

It is curious that the effective medium theory
for the continuum case'® ' also gives a p ., which
is different from p. for inclusions of the same
shape.

The details of the numerical simulations are as
follows: In 3D we used a cubic sample of an fcc
lattice with 666 nodes, and in 2D rectangular
samples of triangular lattice with 946 nodes (~30
%x30) and 1661 nodes (~40x40). In both models
(6) and (7), we assign a set of random numbers
n;;, between 0 to 1, on each bond of the lattice
in each realization, Then we remove the bonds
for which n;;>p where p is decreased successive-
ly from unity. The boundary nodes are given
fixed vector displacements corresponding to a
macroscopic strain.?® The interior nodes are
then allowed to relax until zero force condition
on the interior nodes is achieved. The forces on
the surface nodes are then used to obtain the
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stress, Since the strain is given, we can easily
compute the elastic moduli. The entire proce-
dure is repeated for a number of realizations.
Each realization, i.e., an entire sequence of p
for one set of n;;, required from 2 to 4 CPU
hours on a VAX computer.

The exponents are then estimated from the
slope of a log-log plot of K, N, etc., versus e,
€=p = P e fOr the central force (see inset in Fig.
1 for an example), and €=p -p,, for the isotrop-
ic case. The values of € are chosen to be small
enough (€4 ~0.09) to lie in the critical region,
but large enough (€4 ~0.03 for 30x30) such that
the coherence length & .,~€~"cen is smaller than
L, the macroscopic size of the sample. As a
first guess, we assume arbitrarily that the rigid-
structure percolation incurring near p ., is
short range in nature, and thus v, is taken as v
of the connectivity problem.!? We have typically
used ten realizations for calculating the K, N ver-
sus p relation, and the error bars in Egs. (4) and
(5) reflect fluctuations among various realiza-
tions. Choosing € as we did seems to have cir-
cumvented the finite-size effects, for we find in
2D f=2.3+0.4 for 40%X40 and f=2.5+0,4 for 30
x30 lattices.

We use the known values of p, to estimate ¢, as
is customarily done.?'% 12717 we believe that the
agreement between ¢ for the model (3) calculated
from our program and other known values!2-!7 of
t shows that neither the statistical nor the finite-
size errors of our program are devastatingly
great. The difference between f and ¢ is outside
the range of numerical error.

In the central-force model we do not know the
precise values p.,, and this compounds the
error in estimating f. Since the value of f is so
large, p.e cannot be obtained very accurately
from identifying the values of p where the moduli
have become zero. We vary p .., slightly until
log K or log N versus log € best fits a straight
line. The exact values of ¢ are still being ar-
gued,'®'" and there is certainly a need to improve
our estimate of f,

It is this large difference between f and ¢, much
beyond possible numerical errors, that makes us
believe in the difference in the universality class-
es between the central-force elastic problem and
the conduction problem.
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