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Solitons versus Parametric Instabilities during Ionospheric Heating
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Ionospheric heating is studied by numerical solution of the modified Zakharov equations
for typical ionospheric heating parameters. It is shown that modulational instability followed
by soliton formation can be more important than the previously considered parametric decay
instability.

PACS numbers: 52.35.Mw, 52.35.Ra, 52.40.Db, 94.20.—y

Since before 1970 the ionosphere has been heat-
ed from the ground by radio transmitters operating
at 1-10 MHz with powers in the hundreds of kilo-
watts to one megawatt range (see Fejer' 2 and Gure-
vich3 as well as the November 1974 issue of Radio
Science and the December 1982 issue of Journal of
Atmospheric and Terrestrial Physics). The fre-
quency is usually adjusted so that it is below the
ionospheric cutoff frequency and thus the heating
wave is reflected. Near the reflection region, the
electric field becomes quite intense and a substan-
tial heating of electrons takes place, primarily
through the collisions of electrons with neutral
atoms.

In addition to the collisional heating of electrons
the experiments indicate several anomalous effects,
such as the production of intense levels of high-
frequency Langmuir waves and the production of
fast electrons. If was suggested in 1971 that these

anomalous effects could be due to a class of non-
linear processes called parametric instabilities which
convert the heating-wave energy into plasma oscil-
lations in a range of wave numbers for both high
frequencies near the heating frequency (electron
plasma frequency) and low frequencies below the
ion plasma frequency.

A number of theoretical and experimental inves-
tigations have lent support to this idea, but many
questions remain. The theoretical investigations
have concentrated on the three-wave parametric
instability, which saturates nonlinearly through a re-
peated cascade of Langmuir wave energy to lower
wave numbers. There has been less work on the
modulational instability, " which saturates non-
hnearly through the formation of solitons.

In this paper we investigate the competition
among these various effects by numerically solving
the modified Zakharov equafions8, 12

i BtE (x, t) +i v, E + B„E= nE+ nE& exp( —i stot ) —(nE),

(tl,'+ 2v, tl, —8„')n = tl„'[iE i'+ EDE' exp( —i Stot ) +EQE exp(i lstot ) ],

where dimensionless variables are used as defined
in Ref. 9. The constant Eo is the dimensionless
form of the heater electric field amplitude, E (x, t)
is the slowly varying (in time) amplitude of the
high-frequency electric field, and n (x, t) is the slow-

ly varying density deviation. The x direction is
along the geomagnetic field near the exact reflec-
tion point of an ordinary-mode' heater wave
launched vertically from the ground, and is thus
along the electric field of the heater wave in this
spatial region. The symbol (nE) means the spatial
average of nE; the plasma is treated as though it
were homogeneous in the x direction. Note that
the definition of the high- and low-frequency damp-
ing coefficients v, and v; used in Ref. 9 differs by a
factor of 2 from that used here. The symbol Ace is
the dimensionless form of cop —co„ the difference
between the heater frequency and the local electron
plasma frequency. The value of Ep is held fixed
throughout the calculation. Holding Ep fixed in

time is a somewhat crude model of the sum of two
competing effects, the depletion of Ep due to the
growth of the internal high-frequency electric field
E(x,t), and the replenishment of Eo due to the flow
of energy from the transmitter. Equations (1) and
(2) are supplemented by the condition that the spa-
tial average of E(x, t) vanishes for all time. The
high-frequency damping coefficient v, represents
collisions of electrons with ions and neutrals; in
physical units v, / co2 && 10 s. The low-frequency
damping operator v; is chosen such that in spatial
Fourier space the k component of v;n (x, t) is

v; (k) n (k, t) = ik in (k, t). This model is intended to
reproduce qualitatively the effect known as induced
scattering in plasma with equal electron and ion
temperatures and has been used in previous studies
of strong Langmuir turbulence. ' ' The basic
modified Zakharov equations. (1) and (2) have been
solved elsewhere' ' in other contexts. A detailed
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justification for the use of this model in the present
context, together with the associated features just
discussed, will be presented in a related publica-
tion. '9

Our earlier work ' along the present lines was
appropriate to the exact reflection point of the heat-
ing wave (the point z = 0 in Fig. 1 of Ref. 9), where
A~ = coo —co, = 0. At that location, there can be no
parametric decay instability and our two-dimen-
sional numerical solution of equations similar to (1)
and (2) demonstrated that the dominant effect was
modulational instability followed by soliton forma-
tion and collapse. By contrast, the present paper
considers the spatial location of the maximum elec-
tric field amplitude of the reflected heating wave
(the Airy maximum shown in Fig. 1 of Ref. 9),
some one or two hundred meters below the exact
reflection point. At this location, A~ =coo —~, ) 0
and both kinds of parametric instability are possible.

As parameters typical of the ionospheric modifi-
cation facilities at Arecibo, Puerto Rico, and Platte-
ville, Colorado, we choose most of those used in
Refs. 9 and 10, namely electron density 3x IO

cm, electron and ion temperature 0.1 eV, iono-
sphere density scale length SO km, heater frequency

coo-= 2m x Sx10 s ', ion-to-electron mass ratio 16
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FIG. 1. Positive growth rates for the linearized Za-
kharov equations as a function of the wave number, k.
Since the dispersion equation is an even function of the
wave number, only the growth rates for positive values
of k are shown. The portion of the curve marked OTSI
corresponds to the oscillating two-stream instability
which is a purely growing mode. The portion marked
PDI corresponds to the parametric decay instability which
has a real frequency.

0.04

&&1836 (0+ ions), and maximum heater electric field
strength 2 V/m. These imply a frequency difference (duo —cu, )/co, =1.7x10 occurring at the Airy max-
imum'3 170 m below the exact reflection point.

If we assume that the initial state consists of the pump (heater) wave plus small high- and low-frequency
fluctuations at all wave numbers, the standard parametric instability analysis leads to the dispersion relation

[o)'+ 2i v, (k) cu —k'] [(co+i u, )' —(b (u —k')'] + 2k'iEol'(4o) —k') = 0, (3)

where (~,k) are associated with the low-frequency
density fiuctuation. Equation (3) is solved numeri-
cally with the parameters discussed above, and the
positive growth rates Re[co(k)] ) 0 are shown in
Fig. 1. It is clear that the branch marked OTSI (for
oscillating two-stream instability) exhibits a higher
growth rate than the branch marked PDI (for para-
metric decay instability).

To obtain the fully nonlinear evolution we solve
(1) and (2) numerically. The additional terms in

(1) and (2) are easily incorporated into our numeri-
cal algorithm ' for solving the usual Zakharov equa-
tions.

In order to obtain accurate solutions of the Za-
kharov equations for the parameters associated with
the ionosphere one must use many Fourier com-
ponents. There are two reasons for this: (1) The
narrow range of growing modes requires that we
use a value of the length I. of the system such that
a significant number of modes lie in the range cor-
responding to the two instabilities; (2) during the

nonlinear evolution of the equations modes with a
large wave number become important. For the
results shown in this paper we used 8192 Fourier
components for a system with a length of 1.8
x10 I, After the aliasing terms have been re-
moved, this corresponds to maximum wavenumber
of kX, = 0.93, where we use a tilde to designate a
physical variable.

For our numerical investigation of the time evo-
lution of the ionosphere during the heating process,
we solve equations (1) and (2) with small random
initial fluctuations for the electric field and the den-
sity variations. During the initia1 stage all of the
modes were observed to be damped except those
with a positive growth rate sho~n in Fig. 1. During
the early linear stage both the modes corresponding
to the modulational instability and the parametric
decay instability had the growth rates shown in Fig.
1. As the electric field and the density variations
became larger the nonlinear effects became more
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FIG. 2. Value of 8' as a function of time for 0
~ t ~1.5&10'cv, '=5.0 ms. The electric field and the
density variation are shown in Fig. 3 at the time indicated
by the arrow.
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important. These effects led to the saturation of
the field and the formation of solitons.

To demonstrate these time-dependent effects we
plot in Fig. 2 the time dependence of W =—(1E1 )/
4mnoT. From Fig. 2 one can see that initially 8'
grows exponentially with a growth rate approxi-
mately equal to the maximum growth rate for the
modulational instability. A detailed study of the
Fourier components of the fields shows that be-
cause of the difference in growth rates for the two
instabilities the Fourier components of the para-
metric decay instability soon become insignificant
compared to those of the modulational instability.

Also, one finds that as 8' increases the linear
growth rate eventually stops and the solution satu-
rates. This behavior is coincident with the forma-
tion of solitonlike features in the fields. To show
this structure we plot in Fig. 3 1E (x )1 and n (x ) for
r =1.4x10'cu, ' (marked by the arrow in Fig. 2).
For a soliton one finds a density depression result-
ing from the ponderomotive force in the region
where E is large. A comparison of Figs. 3(a) and
3(b) shows that in those regions where 1E1 is large
one finds a corresponding depression in the ion
density (as indicated by negative values of the rela-
tive density variation).

Once saturation has occurred, this solitonlike
structure persists. The intense electric fields associ-
ated with the solitons can accelerate electrons, thus
resulting in the production of fast electrons. This
process will be studied in a future paper.
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FIG. 3. (a) Absolute value of the electric field at
t =1.4&10'cv, '=4.7 ms. Only the values for x ~2600
x X, =11.0 m are shown. (b) Relative density variation
for the ions at t =1.4x10'co, '=4.7 ms.

%e conclude that for some typical ionospheric
parameters the modulational instability is more im-
portant than the parametric decay instability in the
spatial region of strongest heater electric field, as
tacitly assumed in the original work on this subject. "
The modulational instability leads to the formation
of solitons, as originally predicted by Petviashvili.
This scenario invalidates the concept of nonlinear
saturation via repeated scattering of Langmuir
waves, which, however, may occur for parameters
other than those considered here. There are also
other effects, such as filamentation instabilities, ' '
stimulated diffusion scattering, ' and mode con-
version, which can coexist and compete with the
effects considered here.
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