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Appearance of Gauge Structure in Simple Dynamical Systems
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Generalizing a construction of Berry and Simon, we show that non-Abelian gauge fields
arise in the adiabatic development of simple quantum mechanical systems. Characteristics of
the gauge fields are related to energy splittings, which may be observable in real systems.
Similar phenomena are found for suitable classical systems.
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are mapped onto solutions of

H(l I)y=0 (2)

Gauge fields, both Abelian and non-Abelian, fig-
ure prominently in modern theories of fundamental
interactions. They also arise naturally in many
geometrical contexts, and are central to much of
modern mathematics. In this note we point out that
gauge fields appear in a very natural way in ordinary
quantum mechanical problems, whose initial for-
mulation has no apparent relationship to gauge
fields. We discuss some simple model problems in
detail, and sketch in a general way how observable
consequences of the gauge structures might be ex-
tracted for real physical systems. Finally, analogous
behavior for classical oscillators is described.

It is, of course, potentially significant for models
of elementary particles that gauge fields can arise
"from nowhere, " but we shall not attempt specific
speculations along that line here.

Adiabatic problem Consid. —er problems of the
following general type: We are given a family of
Hamiltonians H(X) depending continuously on
parameters A. , all of which have a set of n degen-
erate levels. By a simple renormalization of the en-
ergies, we can suppose that these levels are at
E=0. Such degeneracies typically will occur when
for each fixed value of the A. there is a symmetry;
however, there need not be a single symmetry
which is valid for all X. For example, the sym-
metry might be rotation around an axis whose
direction is specified by A. . More generally, the
symmetry group H responsible for the degeneracy is
embedded in a larger group G in a X-dependent
way.

By the reasoning leading to the usual adiabatic
theorem, ' if the parameters are slowly varied from
an initial value P; to some final value A. ~ over a
long time interval T, and the given space of degen-
erate levels does not cross other levels, then solu-
tions of

H(A. , )Q =0

H(l (t))y. (t) =0. (4)

Such a smooth choice can always be made locally,
which is sufficient for our purposes. Let us write
for the solutions of the Schrodinger problem (3),
with the initial condition g, (0) = Q, (0),

g, (t) = U,b(t)yb(t). (5)
In writing (5) we have assumed the adiabatic limit,
which can be justified to a sufficient degree of accu-
racy. Our task is to determine U(t). We demand
that the q, (t) remain normalized, so that

0= (q, , q, ) = (q, , U.,y, )+ (q, , U.,y, ) (6)

which leads, in an evident notation, to the equation

(U 'U)b, =(gb, g, )—= A,b. (7)
%e will show that A, an anti-Hermitian matrix,
plays the role of a gauge potential. Equation (7) is
solved in terms of path-ordered integrals by

U(t) = P expJI A (~) d~ (&)

by solving the time-dependent Schrodinger equa-
tion

lay/et=H (Z(t))y (3)
with the boundary conditions A. (0) = A. ;, A. ( T)

f'
If A. , =A.I, so that the initial and final Hamiltoni-

ans are identical, then it becomes possible to for-
mulate a more refined question: Given that the n

degenerate levels are mapped back onto themselves
by adiabatic development, is this mapping a non-
trivial transformation? We find that it is, and that
to describe such transformations gauge fields are
the appropriate tool.

For n =1, a single level, the mapping is a simple
phase multiplication, or for real wave functions, a
sign. These situations, corresponding to U(1) or Z2
gauge fields, were discussed by Berry2 and by
Simon. 3

In the problem above, choose an arbitrary
smooth set of bases Q, (t) for the various spaces of
degenerate levels, so that
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then the. 4 fields transform as

w'(t) = in-'+ nw n-', (10)

i.e., as proper gauge potentials. As for ordinary
gauge potentials, the path-ordered integral (8)
around a closed loop transforms in a simple way
under the gauge transformation (9), like (10) but
without the inhomogeneous term. In particular, its
eigenvalues are gauge invariant.

More generally, we can define the gauge potential
A„everywhere on M, the space coordinatized by

It is remarkable that A depends only on the
geometry of the space of degenerate levels. The
specific form of A,& computed from (7) depends, of
course, upon the choice of bases Q, (t) I.f one
makes a different choice

P'(t) = O(t)il (t),

the parameters X = IA. ', . . . , A.", . . .}.Explicitly,

A T = (f, BQ/6k"). (11)

The ordered integral

U(t) =P exp' A„(x(t))dA. i' (12a)

depends only on the path and not on its parametri-
zation. In particular, for a closed path on M one
obtains the Wilson loop

U = P expII)A„dh. i'. (12b)

As a simple illustration of the preceding frame-
work, consider the generic example of a system
with (n+1) levels, of which n levels are degen-
erate (at zero energy by normalization). Let the
Hamiltonian be H = R (t) HpR '(t). Here Hp
denotes an ( n + 1)-dimensional matrix with the en-
tries (Hp)ij=0 unless i =j=n+1 and R(t)
= R (0 ( t) ) is the rotation

R = exp(iO„T„„+t) exp(ie2T2 „+&) exp(iei T& „+&).

The embedding of the relevant symmetry group SO(n) in SO(n+1) varies with time. The parameter space
M is, of course, the coact space SO(n +1)/SO(n) =5". A simple evaluation of Eq. (11) gives the non-
Abelian gauge potential and field strength

Ft2 = cosH t Tt2', F12 T12~
0

F23 = cos 81 cos02 T23~ F23 T23~

F13=cos 1cos 2 13& 13 1.3.

Since the metric structure

ds =dH +cos 0 d02+cos20, cos 0 d0'

is diagonal we can define

FP — (giigjj) t/2F
jj

the Cartesian tensor. As might have been anticipat-
ed from the simplicity of the starting Hamiltonians
(13), the gauge structure is quite simple. In fact,
the rotations induced by the ordered integrals (8)
amount to parallel transport of tangent vectors to

2112

~„=mR '(aR/atj~) m-,

—F „=mR (1—m)R m —(p, v),t tlR i 8R
ae~

titian

where m represents projection onto the first n com-
ponents. Note that left and right projection m of
the pure gauge R 'B„R gives us a nontrivial
SO(n) gauge field. For n = 3 we find explicitly

At = 0, A2= Stn0t Ti2,

A 3 sln01 cos02 T13 + sln02 T23

leading to the field strengths

(13a)

(13b)

the sphere, with the obvious identifications.
Nevertheless, this very fact shows that the example
involves truly non-Abelian gauge structure.

The example can obviously be generalized. With
the Hamiltonian suitably parametrized on the
homogeneous space G/H, we can evaluate the

gauge field at the "north pole, " thus obtaining
from Eq. (13) a simple expression in terms of the
structure constant fof G:

Fpv fpvQm~Q (17)

(Here A., denote the generators of G; those genera-
tors not in Hare labeled by a Greek index. ) In par-

ticular, for the potentially physical example of a
Hamiltonian with three levels, two of which are de-
generate (at zero energy), and parametrized on
SU(3)/SU(2) 8 U(1) = CP2 we have, in the stan-
dard SU(3) notation, F45= (I+r3) F67 (1 T3)
F47 = F56 71, and F46 F57 ~2

Stationary states. —In many real systems there are
fast and slow degrees of freedom, and then one
may estimate the effect of the slow variables on the
fast ones in the adiabatic approximation. An impor-
tant familiar example is the Born-Oppenheimer
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treatment of molecules, and we shall use the termi-
nology of this example for definiteness, although
we have not investigated any possible applications
in realistic detail. In this context, an important
problem is to find the stationary states, which in
general requires, of course, that we treat the slow
variables quantum mechanically. In order that our
previous discussion, where these variables were, of
course, treated classically, apply fairly directly, let
us first discuss this in the correspondence or quasi-
classical limit.

Suppose that the nuclei can be described quasi-
classically as undergoing a motion with period
2m/co', i.e., let them be in a quantum state of the
type

+21K/Oj

e ~&"'I~(r))dr,Is& =„, (18)

where the label X is periodic with period 27r/co and

p is an integer. States labeled by different X have
negligible overlap, and e 'H'IA. (to)) = IX(to+ t))
to an adequate approximation, where His the Ham-
iltonian for the nuclear motion calculated as if the
electrons followed instantaneously. Within the stat-
ed approximations Is) is a stationary state,
e '"'Is) =-e '&"'Is)-

Let us suppose that for any fixed ) there is a
symmetry guaranteeing degeneracy of two electron-

or

cu' T+ y&
= 2'p

GO
= pCd ytQJ/27r. (19)

In accordance with the correspondence principle,
Eq. (19) represents the energy splittings for small p.
In a more general framework one would construct
an effective Lagrangian for the slow variables and
treat this fully quantum mechanically. The phase
we have found adiabatically represents a term in the
Lagrangian linear in 0, where 0 is the coordinate of
nuclear rotation. Such a term contributes nothing
to the classical equations of motion (in line with its
origin as a pure phase) but does change the quanti-
zation condition. The rotational energy is altered
from n2/2I, n = integer, to F.„=(n —y/2m) /2I.
This agrees with Eq. (19) for large quantum
numbers, viz. ,

ic levels, but that the symmetry cannot be defined
independent of X, as in the previous discussion. As
we have seen, the development of these levels in
response to the motion of X can involve nontrivial
phases and mixings after a complete period of the
motion of A. . We can diagonalize the mixing matrix
and thus find states which are multiplied by phases
exp(iyt), exp(iy2), after a period. For these
states, we then find the quantization condition al-

tered to read

n Yt Y2 Y1~„ „(yt) —E. „(y2) I Pl P2 2
+

2
(Pl P2)

'Y2

2m
(19a)

x+ B(t)x+ p, (t) x =0, (20)

&(t) =y(t) (21)

With y and p, slowly varying, we have the approxi-

An example of this general framework is the
phenomenon of A doubling. 4

Mechanical analogs Simp. —le mechanical analogs
exist for many of the systems discussed above. The
point is that the mechanical equation x =Ax, for A

anti-Hermitian, becomes the Schrodinger equation
for P=x.

In our study of mechanical analogs, we have un-
covered other phenomena which may be interpret-
ed as noncompact gauge fields. Consider a planar
harmonic oscillator in a magnetic field perpendicu-
lar to the plane:

mate solution

x(t) =,. a(t)expi(J o)(r) dr), (22)

with

o)2+ ye) —p, = 0,

a/a = —~/(2o) + y)

(23)

(24)

(the induced electric field has been ignored).
The second equation indicates that in response to

an infinitely slow cyclic variation of the parameters
in the (y, p, ) plane the amplitude a gets multiplied

by a nontrivial path-dependent factor. Interesting-
ly, amplification occurs despite the arbitrary slow
variation and so the relevant gauge group is
GL(I,R), a noncompact group. More explicitly,
the factor is given by

r
exp((ada/a) =exp(f)A) =exp(& I'),

2113
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with

2 12 2 ~ 2
—

2(&2+4&)'/2 2(&2+4&) y2+4&

and the field strength

—(+2+ 4 )
—3/2 (26)

If either y or p, is constant the area enclosed by the
closed path in the (/, p, ) plane collapses and there
is no amplification. Also, note that if p, = const our
system conserves x + p, x = a + a2(t02+ p, ). In
the adiabatic limit, a2(t02+ p, ) =const, in contrast
to the standard adiabatic theorem a (Oi+ —,y)
= const for the case y = const. '
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