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General Theory for Quantum Statistics in Two Dimensions
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Because of complicated topology of the configuration space for indistinguishable particles
in two dimensions, Feynman s path-integral formulation allows exotic statistics. All possible
quantum statistics in two-space are characterized by an angle parameter 0 which interpolates
between bosons and fermions. The current formalisms in terms of topological action of mul-
tivalued wave functions can be derived in a model-independent way.

PACS numbers: 05.30.—d, 03.65.-w

Physics in two spatial dimensions is not always
simpler than physics in three or higher dimensions.
By now the well-known examples include the ap-
pearance of both fractional angular momentum or
spint 3 and exotic statistics. 4 7 Both of them are
forbidden in space of dimension ~ 3; in fact, they
are related to special topological situations in two-
space. 8 The physical relevance of these exotic
statistics is expected to be in condensed matter
physics where two-dimensional systems have be-
come experimentally available. 9 Since a wide
variety of model Hamiltonians can be constructed
for various actual materials, it is important to know
how generally true are the results and conclusions
obtained in the recent studys 7 of exotic statistics in
two concrete models, namely the flux-tube-charge,

composites' and topological solitons. 2 In particular,
are there more exotic statistics other than those
found in these models? This Letter is devoted to
discussing these questions.

I will work in Feynman's path-integral formalism
of quantum statistics. 'o The propagator for a sys-
tem is a sum over all continuous paths in the confi-
guration space connecting the initial state q and the
final state q'. Since the configuration space of n in-
distinguishable particles, M„, is always multiply
connected (see below), paths in different homotopy
classes cannot be continuously deformed into each
other. Thus the propagator is actually a (weighted)
sum over "partial amplitudes, " each being an in-
tegration over paths belonging to a distinct homoto-
py class:

K(q't', qt) = X X(u) exp{iJ1 dtL} &q(t).
a6ml

The homotopy classes n of paths from q to q' can
be made to be identified with the elements of
n, (M„), the fundamental group of M„, by choosing
a mesh of "standard paths" from a fixed point qo to
every point in M„and adjoining the path qq' to the
standard ones qoq and q'qo to form a loop. The
point here is that, as in quantum mechanics on any
multiply connected space, " the complex weights

X(o, ) for different homotopy classes have no a
priori reason to be the same. Invariance under dif-
ferent choices of the standard path mesh and the
composition law for the propagator require that
X(o.) must be a phase factor and form a representa-
tion of n ~(M„).'o

What is M„. For distinguishable particles, the
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configuration space is just Rd" —=Rdx xRd (n
factors), where d is the dimension of space. For in-
distinguishable particles, there is no physical dis-
tinction between points in Rd" which differ from
each other only in the ordering of particle indices.
So the symmetric points in Rd" (under the action of
the symmetric group of n objects, S„) should be
identified [e.g. , ( r i, r 2, , r „)—( r 2, r i,
r „)]. Because we are not always guaranteed that
there is a finite probability for two particles to coin-
cide with each other, the so-called diagonal points
in Rd", D= {(r i r „) with r, = r J for some
i A j), have to be excluded too. '2 Thus the confi-
guration space of n indistinguishable particles is
M„= (R "—D)/S

For d ~ 3, m i(R "—D) =0, so that ~i(M„)
= S„. There are only two one-dimensional
representations of S„: X+(n) =1 for all o, and
X (n) = +1 according as u is an even or odd per-
mutation. The physical meaning of X(u) is now
clear: it determines the statistics. In three or higher
dimensions there are only two kinds of statistics, ei-
ther Bose-Einstein (with X+ ) or Fermi-Dirac (with
X ), with no possibility for exotic ones in a path-
integral formulation. '0

In two dimensions m. , (M„) is much more compli-
cated; it is an infinite non-Abelian group. For-
tunately, its structure has been clarified for some
time. i3 I give a pictorial illustration as follows. Re-
call that a closed path in M„can be represented by n

curves in the three-space (x,y, t) with no intersec-
tions and with the final positions in R2 at t' being
just permutations of the initial ones at t Idisplay.
the equivalence classes of these curves by project-
ing them on a fixed x tplane. To d-istinguish, the
projections on the plane will be called strings.
Without loss of generality, we can assume that (1)
the initial positions of the strings are all different
(i.e., xi « x„), (2) at each time slice there is
at most one intersection of two neighboring strings,
and (3) the strings are always parallel to the t axis,
with x values being permuted initial ones, except in
the neighborhood of an intersection. To keep track
of how the curves in three-space wind, we let one

of the strings at the intersection be in front if the
corresponding curve in three-space has smaller or-
dinate at that point. Such a configuration of strings
is called a braid. '4 (Some examples are shown in
Figs. 1 and 2.) The multiplication of two braids fol-
lows from that of two closed paths in M„, so that
the equivalence classes of braids under continuous
deformation also form a group, called the braid
group, B„(R ). From what is said above, it is iso-
morphic to 7ri(M„).

Some features of the braid group are easily recog-
nized. Denote by 0.

&
the operation of interchanging

two neighboring strings at x, and xi+i with the left
one in front. Then a braid can be algebraically ex-
pressed as a product of a sequence of
a, +-' (1(i ( n —1). From Figs. 1 and 2 it follows

~ t ~i+1~i = ~I+1~I~t+1

~iok=okoi (k C i +1).
There are no further relations among o. s. '

From Eq. (2), all one-dimensional unitary
representations of n i(M„) satisfy

X,((ri) = = X,((r„ i) = e

and are labeled by 0(0~0 & 2m). As a natural
generalization of the interpretation of X(a) from
three to two dimensions, the X~(n) in Eq. (1)
represent new types of statistics, which we call 0
statistics. It interpolates the Bose-Einstein (0 = 0)
and Fermi-Dirac (ii=n) statistics. (An example
for such interpolation is known in one dimen-
sion. '6)

To have more explicit understanding of 0 statis-
tics, we need more knowledge of Xz(n).
n C mi(M„) is always a product of a sequence of
O.k+-'. Physically, a.k represents interchange of only
the two particles at r k and r k+ i along a counter-
clockwise loop with other particles kept outside.
Since we label particles by their initial positions and
the particles temporarily at r k and r „+i can be any
two of them, we can rewrite Eq. (3) as

x, (a„")= e+-"-=exp{—i(e/m) Xb,g„), (4)

where A$;; is the change of the azimuthal angle of

(a) (b) (0) (b)

FIG. 1 Two braids for n = 3. FIG. 2. Two braids for n = 4.
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. 0 ~ dXy(n) =exp —i d—t —XP„"(t) .
dt,.(j " (5)

particle i relative to particle j. For each o.k, only
one term in the sum is nonvanishing and its value
is n . This formula can be easily generalized to arbi-
trary n C mt(M„):

Note that the right-hand side is indeed a homotopic
invariant.

When we insert Eq. (5) into Eq. (1), the right-
hand side of Eq. (5) includes also the contributions
from the standard paths qoq and q'qo. However,
they contribute only an overall phase factor to K so
that we can neglect them:

K(q't;qt) =J~ exp t&~ dt L ———X@,&(t) ~q(t).. t'q' 8 d
m dti(j

(6)

Here q (t) is a path in Rd" D, b—ut paths with initial particle positions differing only in permutations should
be included. Thus, the inclusion of X~(n) is equivalent to addition of a topological action which does not af-
fect the equations of motion but determines statistics. 6

There is another way to eliminate the phase factors X (n) and the sum over n. Let us consider the set, M„,
of all equivalence classes of paths in M„with a given final point qo. Paths with different initial points are
necessarily in different classes. Mathematically, M„ is identified with the universal covering space of M„.
Closed loops through a point q in M„ in different homotopy classes can be viewed as open paths in M„ from
point q to the corresponding points qn on different sheets. [We write the action of m t(M„) on M„ to the
right. ] Thus the path integral in Eq. (1) over q (t) C n in M„can be viewed as a propagator in M„ from qn
to q' corresponding to the original Lagrangian L:

K(q't';qn ', t) = exp(iJ dtL) & q(t).

Now from the wave function Q (q, t), which is single valued in M„and propagates according to K, i.e.,

P (q', t') = ) dq K (q't', qt) y (q, t),

we can define a new wave function P (q, t) in M„:

y(q, t) = exp( —i(H/n )„~ d( XPIJ)) y(q, t), (9)i(j
where the integral is along a path in M„which is identified with the point q in M„. It is single valued in M„
and its propagation obeys

P(q', t') =
J dq K(q't', qt)Q(q, t) (10)

since the phase factor in Eq (9) is chosen in accordance to Eq. (5). As

j (qn, t) =X(n ')P(q, t) (»)
by identifying all the points qn with q, Q can be also considered as a wave function (though multivalued) in
M„. Nothing is wrong with this multivalued wave function, because all branches have the same modulus,
and the multivalued phase factors are just right to keep track of the weights X(n).

Equation (9) can be rewritten in terms of complex coordinates z;:

I/I( ,ztz, t)t= ] ) t ( (zt zt) f (zt,zt, t)

with f single valued and symmetric in pairs of
(z, ,z, ). This P will satisfy the ordinary Schrodinger
equation without the extra 9-dependent term.
When n = 2, an exchange of the particle positions
gives rise to a phase factor e' ~, m being the wind-

ing number. As emphasized previously, for a sys-
tem having three or more particles, Eq. (12) ex-
hibits even more complicated behavior under inter-
change of particle positions.

Thus 8 statistics can be considered either as a na-

(12)

tural generalization of normal statistics in which 8
appears in the phase that the wave function acquires
under exchange of particles, or as due to a peculiar
long-range interaction arising from a topological ac-
tion where 0 appears as a coupling constant. In the
first way, the notion of wave functions must be
generalized.

To conclude, some remarks are in order. First,
Eqs. (6) and (12) have already appeared in Refs.
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5-7. So all the results and conclusions derived
there from these equations are generally true.
Especially the 0 statistics in those models exhaust
all exotic possibilities.

Second, mathematically there is a very close anal-
ogys of all this to 0 worlds'7 in gauge theories. In a
path-integral formulation in the gauge AD = 0, the
configuration space of a non-Abelian gauge theory
is the quotient space M/S, 's where M is the space
of gauge potentials in three-space and Ã is the
group of gauge transformations in three-space.
Since m;(M/9 ) =no(S' ) =m3(G) =Z, all one-
dimensional unitary representations of mt (4/9 )
are characterized by an angle parameter 0 too. The
"vacuum angle" 0 appears either as a coupling con-
stant in a topological action or in the multivalued
phase of a wave functional in Q/ $ which is single
valued in the universal covering space sf . I em-
phasize this parallel to show that nothing is ill de-
fined or mysterious with 0 statistics.

Finally, since the treatment is model indepen-
dent, we expect the appearance of 0 statistics in two
dimensions on a general ground. It is worthwhile
looking for the signal for it in two-dimensional
physical systems.
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