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We study the phenomenon of spontaneous compactification for the case of anomaly-free
gauge theories in six dimensions with manifold M4x S, and in eight dimensions with mani-
fold M4Xx S4. For the latter case, we show how to obtain, for example, Georgi’s three-family

SU(11) theory in Minkowski space, M.
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Of all the fundamental interactions, gravity ap-
pears most elusive theoretically. We have candidate
theories for strong and electroweak forces, both
based on the notion of renormalizable local gauge
symmetry. One attractive approach to include grav-
ity is through supersymmetry and supergravity, and
this topic is currently attracting a great amount of
attention. Another approach which we shall follow
here, not necessarily incompatible with the first, is
to consider higher-dimensional space-times and
their ‘‘spontaneous’ compactification to four
dimensions by choosing stable solutions to the gen-
eralized Einstein equations with less than the max-
imum available symmetry. By compactifying the
extra dimensions to a sufficiently small unobserv-
able size, one may hope to generate all interactions
from essentially one. This ambitious program has a
long and tempestuous history. Presently, the major
questions are of stability of the solutions, and of the
occurrence of massless states such as chiral fer-
mions.

In particular, there has been much recent interest
in gravity-coupled Yang-Mills gauge theories.'™
For consistency of the quantum version, one must
start with a classical theory which avoids both
gauge® and mixed gauge-gravity anomalies®’; this
severely restricts the choice of fermion representa-
tion.®° In order to obtain chiral fermions in four
dimensions, it is necessary>'? to compactify with
gauge fields having a topologically nontrivial vacu-
um value in the extra dimensions. The vacuum
configuration of the gauge field in the compact
space may be, for example, a monopole"? or an in-
stanton.* Here we consider both these cases and
discuss how to obtain interesting chiral fermions in
four-dimensional Minkowski space.

The inclusion of gauge fields is contrary to the
original spirit of Kaluza!' and Klein!?2 whose aim
was unification with gravity. Although this ‘“‘non-
unified”’ approach seems necessary to obtain chiral
fermions, we may hope that the gauge fields might

be obtainable from a still higher dimension, for ex-
ample, by use of quasi Riemannian geometry where
the tangent group is other than the generalized
Lorentz group.'> If this were correct, then the
present type of theory could be contained within a
fully unified framework including gravity.

Let us consider an SU(N) gauge theory in some
even-dimensional (pseudo) Riemannian space-time
coupled to spin-% Weyl fermions, to gravity, and
possibly to scalar fields. The fermions must be
chosen such that if the dimension is d =2n, then
symmetrized traces over the products of (n +1
—2p) generators of the gauge group written in the
fermion representation vanish for p=0,1,2,....
The solutions of this algebraic problem are known®
and are most conveniently written® in terms of su-
peralgebras SU(N/M). Super Young tableaux

[m]N/M) correspond to the sums
m
2 (= DP(Lm—pI™, {p} M),
p=0

where [m—pl‘™, {p}™ denote totally antisym-
metric, symmetric representations of SU(N),
SU(M), respectively. In this article, we do not con-
sider possible physical implications of SU(M)
which we regard as merely a classification group.

The nature of the solution depends on whether d
is of the form d=4k or d=(4k+2). In d=(4k
+2), we must chose an imaginary representation;
for example, we may choose

[m] N — [N =M —m] N, ey

where . denotes left-handed chirality. In d =4k, a
real representation is necessary; for example, with
(N — M) even,

[+ (N =M)] MM )

is anomaly free in d = 4k.
It is possible to show (as was conjectured in Ref.
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9) that this procedure generates all possible solu-
tions for the fundamental totally antisymmetric
representations of SU(N).

Let us consider the case of d = 6 dimensions, the
lowest even number greater than four. To obtain
chiral fermions in d =4, we must start with chiral
fermions in d = 6 in one of the above anomaly-free
representations, and arrange that for the gauge field
of a U(1) subgroup of SU(N) there is a monopole-

like vacuum value in the 56-space.'* With mono-
pole charge n the number of massless Weyl spinors
in d =4 can be computed, by use of monopole har-
monics"?; the answer is # times the eigenvalue of
the U(1) generator, written such that the entries are
relatively prime integers (i.e., no common factor).
We assume an unbroken SU(5) naturally embedded
so that the U(1) generated is Y~ (p,p.p.p.p,
ay,ay,...,.ay—s) with 3 X7%a;= —5p. One can then
show that!?

[m] N0 — np (m [m 1V =VM) + (m = N + M) [m — 11V =V4) (3)

under spontaneous compactification. The subscripts

&7, L denote left chirality in d =6, 4, respectively.
For minimal multiplicity we first consider n =p

=1 in Eq. (3). To analyze the SU(5) content it is

convenient to note that under SU(L)
— SU(L — 1), with natural embedding,
[m](L/M)_. [m](L—llM—I)' @)

In this notation, an SU(5) family in d =4 corre-
sponds to an anomaly-free combination which may
be written

215V or  ([1215 +[11592) (5)

or in other forms (like [11/¥V +1[31/") equiva-
lent up to real representations. The forms exhibit-
ed in Eq. (5) are connected by relations belonging
to the type

[m](L/M)+[m—1](L/M)E[m](L/M‘”. 6)

Consequently, we may consider just [2]1/" (one
family). Considering Eqgs. (3) and (4) this can arise
only by starting from the anomaly-free d =6 com-
bination

[3];N/N-S)_[2];N/N_5)- @)

But after compactification, this, according to Eq.
(3), gives —10[2]1 %D up to real representations
and hence the number of families obtained in this
way is always a multiple of ten.'® Because of this,
such monopole-induced compactification looks un-
promising and we are motivated to look at the next
possible even dimension, d = 8.

In d =38, we consider the compactification on to
M, xS, and arrange a vacuum value for gauge
fields in an SU(2) subgroup to be in an instanton
configuration.* In this case, when we take only to-
tally antisymmetric representations of SU(N), the
chiral fermions follow the rule

[m];N/M)_, [m—l],fN_z/M) (8)

r
in spontaneous compactification from d=18 to

d =4. Note that Eq. (8) is so simple because only
the doublets of the SU(2) subgroup survive. To
obtain one family in the form [2]1{%" we may start
from [3];7/” with an SU(7) gauge group, for exam-
ple.

This makes it interesting to study previously sug-
gested unitary flavor unifications.'”!® To obtain
Georgi’s SU(11) model, we start from the fermion
representation

[5];13/3)+2[4]i(/13/5)+3[3]£}3/7) 9)

which reduces to the three-family combination,
with unit coefficients, [4]1, —[3], —[2], —[1],
under SU(11) in d =4. The other models of a simi-
lar type!'® can likewise be reproduced in SU(7) and
SU(9).

It is important to require that the vacuum field
configuration correspond to at least a perturbatively
stable solution. The stability of spontaneously com-
pactified models has been studied by several au-
thors" > %19~ 22 put the results are still incomplete.
It has been conjectured,!® on the basis of several
explicit examples, that the spontaneously compacti-
fied solutions of gravity-coupled gauge theories are
stable if the gauge group is contained in the isotropy
group of the compact space. For example, the com-
pactification from 4 =8 with gauge group SU(2)
would be stable but with larger SU(N) would be
unstable.

We should, therefore, use as the initial gauge
group in d=28, SU(N) ® SU(2) and keep only
doublets of SU(2). To obtain the Georgi model!’
we therefore use

([4];11/3) +2[3]-(;l/5) +3[2];11/7)’ 2)

+3(BIYD+ 110V, 1)

under SU(11/M) ® SU(2). This solution has
been shown to be perturbatively stable.*
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After spontaneous compactification, the local
gauge symmetry is SU(N) ® O(5) where O(5) is
the isometry group. The isometry group is unbro-
ken but in the present case there are no massless
fermions with nontrivial O(5) couplings. Thus the
O(5) acts purely as a spectator in the light sector.
There are massive particles which have nontrivial
O(5) transformations, but these states may be very
heavy.

In the light sector the gauge group SU(N) needs
to be broken down to the phenomenological groups
SU3) ® [SU(2) ® U(1)] and SU3) ® U(1).
As candidate Higgs scalars there are the com-
ponents 5,6,7,8 of the gauge fields in the adjoint of
SU(N). To decrease rank, however, we need
scalars with nonzero N-ality. It seems that these
must be put in by hand unless we hypothesize a
dynamical symmetry-breaking mechanism.

To summarize, we have seen how through spon-
taneous compactification anomaly-free gauge the-
ories lead to certain chiral fermions in four dimen-
sions. It appears most attractive to begin with
d =8, and then use an instanton-induced compacti-
fication. In this way, we can reproduce in d = 4 fla-
vor unification schemes that have been previously
studied. We have given only a summary of results;
details will be given elsewhere.!> Our main point is
that the chiral fermions of a gauge theory in a
higher-dimensional space-time are severely restrict-
ed by the requirement of survival of acceptable
massless fermions in four space-time dimensions.
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