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Classical Model of the Dirac Electron
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A covariant, symplectic, classical dynamical system is presented whose quantization, by re-
placement of the Poisson brackets with commutators, gives precisely the Dirac electron
theory. For the classical system the velocity and momentum are independent dynamical
variables, as in Dirac electron; it undergoes a real Zitterbewegung so that the spin is the orbital
angular momentum of the Zitterbewegung. Thus the longstanding problem of representing
the configuration space of quantum spin by a classical model is solved. Three different forms
of the dynamical equations are given.

PACS numbers: 03.20.+i, 11.10.Qr, 14.60.Cd

Historically quantum spin was introduced as a
"classically nondescribable two-valuedness, " as
Pauli described it in connection with his exclusion
principle. ' Ever since, many attempts to model the
electron as some kind of spinning top failed, simply
because the configuration space of the quantum
spin is quite different from that of a top. 2 We
present here a classical relativistic model of an elec-
tron with internal degrees of freedom which are dif-
ferent than those of a top but in precise correspon-
dence with the quantum system, and whose quan-
tization exactly gives the Dirac electron. In the
process we verify for the classical model the intui-
tive picture of the quantum spin proposed by
Schrodinger a long time ago, called "Zi tterbe-
wegung.

"
It is well known that the Dirac equation in

Heisenberg representation has three sets of indepen-
dent dynamical variables: position of the charge x,
velocity of the charge x=co, , and momentum p.
Position and velocity, or momentum and velocity,
can be specified simultaneously, they commute, but
position x and momentum p do not. This gives

rise to the remarkable phenomenon of Zitter-
be~egung, which is the rapid oscillatory motion of
the charge with velocity c around a center of mass
that is moving like a relativistic particle with veloci-
ty p/m. The new center of mass and relative coor-
dinates are defined in terms of the above three sets
of dynamical variables, and one can separate the
internal and external algebras and obtain a new type
of geometry of the phase space. 4 A third way of ex-
pressing dynamical variables is via the spin vari-
ables, and the spin appears as the orbital angular
momentum of the Zitterbe~egung.

All of these statements are made, however, in
terms of Heisenberg operators. In order to really
visualize Zitterbe~egung one has to take expectation
values with wave packets. And if one takes expec-
tation values between purely positive energy states
it is well known that Zitterbewegung disappears.

But the Dirac particle is a rather different kind of
dynamical system than a point particle with an (x,p)
phase space only, because of the additional dynami-
cal variables; in fact it is more like the radiating
classical Lorentz-Dirac electron including radiation
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Z = l&Z, I Z7T,

(2)=ef„v, v =zy z=x,
P

reaction. Therefore, it is important to find the
classical symplectic system corresponding to it.
Some time ago, Grossmann and Peres went back-
wards, turning the Dirac commutators into Poisson
brackets. They had some difficulties with manifest
covariance and the physical interpretation of the
proper time and of some of the dynamical variables.
In this work, we start directly with the Lagrangian
and Hamiltonian of the classical system in manifest-
ly covariant form and derive the different forms of
the dynamical equations. The invariant time vari-
able turns out to be the proper time of the center of
mass, and not of the charge, which removes the
previous difficulties. The set of dynamical variables
can be choosen both in classical and in quantum
theory in three different ways: (i) the center of
mass and relative coordinates and momentum; (ii)
the coordinates of the charge x, momentum p, and
spin variables; or (iii) the coordinates and momen-
tum of the charge, and the internal oscillating de-
grees of freedom.

Furthermore, we shall also show that the Dirac
electron in Heisenberg representation, the classical
model, and the classical Lorentz-Dirac radiating
electron all satisfy a third-order equation in x of ex-
actly the same form; this is a fourth way of
representing the additional spin degrees of motion.

The classical system is characterized by the usual
pair of conjugate variables (x„,p„)and by another
pair of conjugate classical spinor variables (z, —i z)
representing internal degrees of freedom. The con-
figuration space is thus M4& C4. We shall use an
invariant time variable v. The motion in M4&C4
when projected down to M4 will look like a particle
with internal spin degrees of freedom. Here z C C4
is a Dirac spinor and z = z y .

The Lagrangian is given by

I = , Zi (zz —zz) +—p„(x"—zy"z)

+ eA (x)zy~z,

where X is a constant with the dimension of action
(c=1). We can view here p„asLagrange multi-
pliers when the velocities x are represented by
zy"z. This representation of velocities was first
used by Proca 9 who considered, however, only
solutions of (1) corresponding to spinless particles.
The structure of the system (1) is much richer, as
we shall see. The dynamical variables are (z,z,

p„,x„)and the Euler-Lagrange equations corre-
sponding to (1) are as follows (I):

with

m„=p„—eA„,

z(r) = [cosmic+(y"p /m)sinmr]z(0),

z(7) =z(0) [cosm7 —i (y"p /m)sinmr],

Up =x~ =
2

H + x~(0) H cos2mr (4)
~ pp, pp,

x (0)
+ sin2m v,

p„=const, p =m2, H=x~~.

Quite generally, for the system (2), ~=x~n„is a
constant of motion. For a free particle, A = H = m

defines the parameter m which we can identify with
mass m [which does not enter Eqs. (2)1. In the
solutions (4) we already see the classical analog of
the phenomenon of Zitterbe~egung. With H = m,
the velocity x„=v„has a term p„/m as it should,
plus an oscillating motion with the characteristic
frequency ~ = 2m.

Instead of the variables z and z we can work in
terms of the spin variables. The set (2) is equiv-
alent to the following closed set of dynamical equa-
tions (II):

xp vga vp 4~pp~ j

m = eF vi', S,= m v, —m, v~

for the set of dynamical variables (x„,v, 7r„,S„,)
The connection between z, z, and 5„„is

S,= ,'i z [y„,y„]—z. (6)

The Hamiitonian form of the equation of motion
and the Poisson brackets are defined with respect to
the constant of motion ~ =7r„zy"zwhich is the
"Hamiltonian" with respect to the invariant param-
eter ~. In terms of the conjugate pairs of variables

Fpv= Av, p Ap, v

We note right away that x„x"& 1. Thus the invari-

ant parameter ~ cannot be interpreted as the proper
time of the charge. We shall later see that ~ is pre-
cisely the proper time of a "center of mass" which
will be defined.

For a free particle the solutions of Eqs. (2) can be
found easily. They are (with X = 1)
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(x,p) and (z, i z), the basic Poisson brackets are

)
. Bf Bg Bg Bf

bz t)z tlz

Bf Bg rlf Bg+ gjMV

Bx~ Bp" Bp~ Bx'

where X„„is a constant. Consequently we have

S„„=(4m') '(v„p„i—„p„)+X„„,
or, in terms of the internal coordinates,

S„,= (Q„p,—Q„p„)+ X„„.
Hence

(14)

(15)

(v~, vy} = 4s~p, {S p, vv)= g vvp gpvv

{S p, s~g) =g Spq —gpys q

—g gSp~+gpgSuy

Clearly, the set (5) is equivalent to the Poisson
bracket of y = (x, v„,p„,S„„)with A, i.e., y
= {y,P').

In order to study the structure of the internal
dynamics of the particle, we split x„andx = v„as
follows:

x„=X„+g„,v„=V„+U

in such a way that by definition, V"=X". For a
free particle, V„=0 and V~= p„/m. We can inter-
pret L„andp„as the center-of-mass coordinates
and Q„and P„=mU„as the relative position and
momentum. For a free particle, again, the dynami-
cal system in terms of this new set is as follows
(m):

X„=V„, V„=O,
(10)

Q„=m 'P~, P„=—4m Q„.
In particular, the last two equations show that the
internal variables are oscillator coordinates,

Q„+4m Q„=O, P +4m P =0,

with a frequency 2m.
The orbital angular momentum L„,=x„p„—x„p„is not a constant of motion, but

L„,= v„p„—v„p„=—S„„.Hence the sum

J„„=L„„+S„„ (12)

is a constant of motion, the total angular momen-
tum, with S„„beingthe spin variables. From (5),

S „=—(v~ p„vp~) = 4p (p Sp~ p~sp ).
The quantity „~,=p„S~,+p~S„„+p,S» is a con-
stant of motion, = 0. Defining 4p
= —4m X"",we can write

{x„,x„}= 0, (x„,7r„)= g~„, {m„,m„)= eF„,.
We then obtain the Poisson brackets for v„,S„„as

follows:

J„„=X„p„—X„p„+X„„=~„+g,
withe'„„=0,X „=0.

Thus there are two different decompositions of
the total angular momentum, Eqs. (12) and (16).
In the second one we have the orbital angular
momentum of the center of mass W plus the orbi-
tal angular momentum of the relative motion,
which are separately conserved. We can write

(16)

X„,=W ~„+6„„=Q„P„—Q,P„+b,„,;

both W „„andA„„areconstants of motions; 5„„
(which may be zero) can be interpreted as an intrin
sic angular momentum in the internal motion.

The symplectic algebra of the representation III
[Eqs. (10)j is given by

{X„,X„)=m 'X„„,(X„,p„)=g„„,
(p, ,p.) = o,

{g„,g„)= m-'X„„, (P„,P„)=4m'Z„.,
(18)

{Q„,P„)= —g„„W/m; g, =g„,—m p p, .

Note that Eqs. (10), form III, are again of the form
y = (y,P'). From these we derive the following
remaining brackets:

{X„,&.p) =m '(p„ppQ. p~.gp—
—S „pp+Sp~ ),

{p„,x.p} = 0,

(s p, z )=g „sp—
gp s —g.;sp„

(g„,&. ) =g„,g.—g„.gp.

{&-p &vs) g-~4~ =gp~~-~-
(19)

+ gpsS ay +gang ppg gpyga pg

g~a QpP~ +gpt Q~ P~.

Note that the internal algebra generated by
(Q„,P„,X„„,~) is closed:

S„„+4m S„„=4m X„„, (13) g&&xpv+ gp&~~v
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v~ = (v~, vs), v~ = z'y~z,

v5=i zy5z', a =0, 1, 2, 3, 5. (21)

We omit the index 4 and use 5 instead to avoid con-
fusion. Now v, is a unit five-vector, although v„is
not, i.e., v'v, =1. The metric is (+ ————).
The extension of Si " is

(22)

Further,

(0„,X„]= —m -'(S„,—Z„„),{g„,p„]= 0,
(20)

(P„,X„}=m 'p~p„+m p~p„P', (P„,p, j =0.

The algebras (17)—(20) have their exact counter-
part in the proper-time formulation of the quantum
Dirac electron. ' Note, however, that the commu-
tators in (8), and (17)—(20), are independent of the
four-dimensional y matrices; hence they have in
quantum theory, in addition to the Dirac represen-
tation, more-dimensional representations, which
would involve other fermion states, besides the
electron and positron.

Our dynamical system characterized by Eqs. (5)
has a more natural form in a five-dimensional
space-time. We define a five-velocity by

terms of S, and obtain finally (IV)

Xa = eFabX + Sab (27)

mx„=eF„„x"+ —', e'9 „„'~'",

with

(28)

pv =gatv g v

because of the identity (x )2= —x„'x'". The
difference between (27) and (28) is that S„„is an-
tisymmetric, whereas 9 ~„is symmetric.

One of us (N.Z.) was the recipient of a fellowship
from "Fondazione Angelo Della Riccia."

It is interesting that in this form our system is in
correspondence with the Lorentz-Dirac equation
which describes a spinless particle (i.e. , no internal
degrees of freedom) but includes radiation reaction.
This is in agreement with the one-to-one correspon-
dence between the quantum Dirac equation and the
classical Lorentz-Dirac equation found earlier. "
The Lorentz-Dirac equation (c = 1),

mxp = eFpvx" + 3 e [ x p+ (x )xp],

can be written as

Further with p5=0, +5=0, F5„=0,F55=0, our
system in form II [Eqs. (5)] becomes the following
(II'):

bx, =v„v,=4S,bm,

Sab &aVb &bVa

with constraints

var'=1, Saba =0

and the constant of motion

~a = eFab~,b

(23)

(24)

P' = v rr ~
= m. (25)

~ ~

mVa+Sabe +Saba = eFa (26)

But, using (23) and (24), we can eliminate S,S in

The four first-order equations (23) can be
transformed into a single third-order equation in x.
First, from (23), S,&v =m, —mv„and differen-
tiating this, we have
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