Low-Temperature Specific Heat of CeCu₂Si₂ and CeAl₃: Coherence Effects in Kondo Lattice Systems

C. D. Bredl, S. Horn, and F. Steglich Institut für Festkörperphysik, Technische Hochschule Darmstadt, D-6100 Darmstadt, West Germany

and

B. Lüthi

Physikalisches Institut, Universität Frankfurt, D-6000 Frankfurt am Main, West Germany

and

Richard M. Martin Xerox Palo Alto Research Center, Palo Alto, California 94304 (Received 20 January 1984)

Measurements of the specific heat as a function of temperature at varying magnetic fields Measurements of the specific heat as a function of temperature at varying magnetic fields
for the Kondo lattice systems CeCu₂Si₂ and CeA₁₃ reveal that, on an energy scale ~ 0.5
K << T_K , there is structure which disorder in the alloys $Ce_{0.9}Y_{0.1}Cu_2Si_2$, $Ce_{0.8}Y_{0.2}Cu_2Si_2$, and $Ce_{0.8}La_{0.2}Cu_2Si_2$. The results support the Fermi-liquid theory of Kondo lattices.

PACS numbers: 65.40.—f, 71.20.+c, 75.20.Hr

The low-temperature properties of Kondo lattice systems found in many nearly trivalent Ce intermetallic compounds have continued to fascinate both experimentalists and theorists.¹ Among other phenomena, one finds magnetic ordering involving reduced Ce moments² as in CeA1₂, enhanced Fermi-liquid effects^{3,4} as in CeAl₃, and heavy fermion superconductivity⁵ as in CeCu₂Si₂. In these systems there is an intermediate temperature range where the cerium atoms appear to act like independent spin- $\frac{1}{2}$ Kondo impurities with a characteristic "single-ion" Kondo temperature T_K . Although many aspects of the impurity Kondo problem are well understood, 6 the low-temperature properties of the Kondo lattice and disordered concentrated alloys are the subject of much current investigation and speculation. $1-5$, $7-9$

The purpose of this paper is to present results of new investigations of the low-temperature specific heat $C(T)$ as a function of magnetic field in CeAl₃, CeCu₂Si₂, and the disordered alloys $Ce_{0.9}Y_{0.1}Cu₂Si₂$ and $Ce_{0.8}Y_{0.2}Cu₂Si₂$, as well as $Ce_{0.8}La_{0.2}Cu₂Si₂$. These results show that the structure in $\gamma(T) = C(T)/T$ discovered in both CeAl₃⁴ and $CeCu₂Si₂¹⁰$ is a consequence of the periodicity of the Ce ions; the effect of a magnetic field in all concentrated systems studied is qualitatively different from the impurity case; and there is a characteristic temperature, $T_0 \sim 0.5$ K, associated with the lattice case, an order of magnitude smaller than T_K in these materials. These results are consistent with the Fermi-liquid arguments of Ref. 8, which sug-

gested that in a lattice the "Kondo resonance" in the density of states near the Fermi energy would have structure and pronounced variations for energies $\lt k_B T_K$.

The specific-heat results of $CeCu₂Si₂$, $CeAl₃$, $Ce_{0.9}Y_{0.1}Cu_2Si_2$, and $Ce_{0.8}Y_{0.2}Cu_2Si_2$ are plotted as γ vs T in Figs. (1a) – (1c). There are four important aspects of the data to mention. First, two different CeAl₃ samples were studied. One was taken from the same batch as the sample studied in Ref. 3 and by Niksch, Lüthi, and Andres¹¹ [illustrated in Fig. $1(b)$. The other one was kindly supplied to us by E. Umlauf; for $B = 0$ its γ vs T dependence is qualitatively the same as that in Fig. $1(b)$ and is quantitatively very close to that published in Ref. 4 (cf. also Ref. 12). Second, we have chosen for this study CeCu₂Si₂ samples with T_c < 0.5 K: As discussed in Ref. 10 these samples (No. 10 and No. 11) behave as gapless superconductors. This is demonstrated in Fig. 1(a) by the very large value of γ (as $T \rightarrow 0$) in the superconducting $(B=0)$ state and the absence of a $C(T)$ jump at T_c . Third, the results for $Ce_{0.8}La_{0.2}Cu_2Si_2$ are close to those for $Ce_{0.9}Y_{0.1}Cu_2Si_2$ [Fig. 1(c)]. Fourth, as was already shown for CeAl₃ as well as CeCu₂Si₂, ¹⁰ the external magnetic field \bm{B} gives rise to an upturn in \bm{C}/\bm{T} at low T, attributed to a nuclear term $C_N(t,B)$ arising from ⁶³Cu, ⁶⁵Cu, and ²⁹Si isotopes in CeCu₂Si₂¹ and ^{2/}Al in CeAl₃.³ We calculate $C_N(T,B)$ neglect ing any hyperfine contributions and subtract it from the raw data to obtain specific heats represented by the solid lines in Fig. 1. This is purely electronic

FIG. 1. C/T vs T for (a) CeCu₂Si₂, (b) CeAl₃, (c) Ce_{1-x}Y_xCu₂Si₂, and (d) La_{1-x}Ce_xAl₂, as a function of magnetic field B. The symbols are explained in (a); in (c) open symbols were chosen for $x = 0.1$ and closed symbols for $x = 0.2$. The maximum experimental error is indicated by the symbol size. Solid lines in (a) – (c) display electronic specific heats after subtraction of a nuclear term (see text). The results in (d) are taken from Ref. 13 (dashed lines, $x = 0.0064$) and Ref. 14 (dotted lines, $x = 0.0149$). Note that T_K is much larger (\sim 5-10 K) in (a)-(c) than in (d), where T_K \sim 0.4 K. The inset in (b) shows $\frac{\partial \ln \gamma}{\partial \ln V}$ vs T for CeAl₃ (see text).

since below 1 K any phonon contribution is completely negligible for these materials.

We begin with a discussion of the zero-field results. Above 0.5 K the $\gamma(T)$ dependence for each compound and alloy studied is qualitatively the same as for the spin- $\frac{1}{2}$ impurity Kondo problem which has been extensively investigated, e.g., for Ce in LaAl₂.^{13,14} All these systems exhibit spin $\frac{1}{2}$ (crystal-field ground-state doublet) and the thermodynamics can be understood in terms of a model invoking a resonance level¹⁵ of width $k_B T_K$ centered on the Fermi energy as shown schematically in Fig. 2. The results of this model are close to those of the Bethe-Ansatz calculations⁶ and yield a continuous increase in $\gamma(T)$ as T decreases. In this singleion theory the Kondo temperature is related to the maximum value of γ (at $T=0$) by $\gamma_{\text{max}}T_K \approx 0.68R$, where R is the gas constant. The T_K values of the compounds obtained from γ_{max} (at values of the compounds obtained from γ_{max} (a) $T_0 \approx 0.5$ K) in this way are $T_K \sim 3$ K for CeAl₃ and $T_R \sim 4.5$ K for CeCu₂Si₂, compared to ~ 6 and $T_R \sim 4.5$ K for CeCu₂Si₂, compared to ~ 6 and ~ 10 K as obtained^{16,17} from neutron scattering. For the concentrated alloys, $\gamma(T)$ is seen to be somewhat smaller than in CeCu₂Si₂. T_K obtained

from γ_{max} (at the lowest accessible temperature) increases with Y concentration, but decreases on going from $Ce_{0.8}Y_{0.2}Cu₂Si₂$ to $Ce_{0.8}La_{0.2}Cu₂Si₂$, in accordance with the well-known fact¹⁸ that in Cebased systems T_K usually rises with decreasing volume and vice versa. For a Kondo impurity with spin $\frac{1}{2}$, $\gamma(T)$ continues to increase monotonically

FIG. 2. Schematic drawings of the resonance density of states near the Fermi energy for the spin- $\frac{1}{2}$ Kondo problem with $B = 0$: (a) impurity case; (b) the form indicated by the experiment for the present lattices. In the lattice, the resonance is not in general symmetric; however, only the symmetric part $\bar{\rho}$ enters the specific heat.

as T decreases¹³⁻¹⁵ as shown in Fig. 1(d). However, in the compounds $CeCu₂Si₂$ and $CeAl₃$ there is decrease in $\gamma(T)$ below $T_0 \approx 0.5$ K as shown in Figs. $1(a)$ and $1(b)$ and in Refs. 4 and 10.

To show that the periodicity of the Ce ions is directly responsible for the observed structure, we have attempted to destroy coherence in $CeCu₂Si₂$ in a controlled way, i.e., by substituting up to 20 at. % Ce by either Y or La. The resulting $\gamma(T)$ dependences are shown for the Y-doped samples in Fig. 1(c). Down to the lowest accessible temperature (0.07 K) no maximum can be resolved in the $B = 0$ data. Rather, $\gamma(T)$ of the concentrated alloys resembles that of the dilute Kondo alloys [Fig. $1(d)$ and Refs. 6, 13, and 14]. This forms a convincing case that the $(B=0)$ $\gamma(T)$ maximum found at a finite temperature well below T_K is a unique feature of Kondo lattices, which signals a transition to the coherent coupling of the Kondo resonances at the periodic Ce sites.

The results for $\gamma(T)$ as a function of magnetic field provide further evidence for cooperative behavior in the concentrated systems. In the case 'of a single spin- $\frac{1}{2}$ Kondo ion, the twofold resonance at E_F becomes split by the external field. If the Zeeman energy $k_B T_B = \mu_s B$ is greater than $0.5k_\mathbf{B} T_\mathbf{K}, \, \gamma(\textit{T})$ has a maximum '¹⁵ at a temperature T_{max} which is shifted upwards with increasing field as is shown in Fig. 1(d) for (La, Ce) Al₂. Although no results on dilute Kondo systems exist at fields much lower in proportion to T_K , the theory indicates clearly that there is no maximum (at finite temperature) in $\gamma(T)$ for $T_B \le 0.5T_K$. In the concentrated systems, however, the largest values of T_B/T_K , obtained at $B = 8$ T, are ~ 0.8 in CeAl₃ and \sim 0.4 in CeCu₂Si₂ choosing the average value of ~ 0.4 in CeCu₂S₁₂ choosing the average value of the saturation moment $\bar{\mu}_s \approx \frac{1}{3} \langle \mu_z \rangle = 0.43 \mu_B$ and $0.36\mu_B$, respectively, calculated from the known crystal-field schemes of Ce^{3+} (Ref. 17). The present observation of maxima in $\gamma(T)$ (even at $B = 2$ T) for all concentrated systems studied shows that there are low-energy effects in the concentrated alloys as well as in the lattices. However, the field dependence of the $\gamma(T)$ maximum for both CeAl₃ and CeCu₂Si₂ is different from that of the concentrated alloys. One clearly sees that the peak height γ_{max} is reduced more slowly and the peak temperature T_{max} decreases, rather than increases, with field.

The present results for the Kondo lattices are consistent with the qualitative arguments of Ref. 8 that coherence leads to structure developing in the Kondo resonance density of states $\rho(E)$ at the Fermi energy. The observed minimum for $\gamma(T)$ at

 $T = 0$ shows that there is a minimum at E_F in the symmetrized density of states $\bar{\rho} = \frac{1}{2} [\rho (E - E_{\rm F})]$ $+ \rho(E_F - E)$ as illustrated in Fig. 2(b). This can be understood as the tendencey to form a gap at E_F . However, there cannot be a true gap in these systems because of band crossings in symmetry directions. $⁸$ Magnetic fields modify the structure but do</sup> not destroy it for $T_B < T_K$, because sum rules⁸ require the coherent resonance near E_F unless T_B is
so large that the spins are "frozen". The effects of so large that the spins are "frozen. The effects of disorder in a dense Kondo system have not been addressed theoretically. The present results suggest that the coherence is modified but there still remain cooperative interactions between different sites.

There are other indications of a low- T regime in which the Ce atoms act coherently in a Kondo lattice. Resistivity (ρ) experiments show that, at low temperature, ρ increases with T (Refs. 1–5, 7, and 8) and *B* (Remenyi et al.¹⁹), whereas the opposite occurs for a spin- $\frac{1}{2}$ Kondo impurity.^{1,6,20} The coherent Fermi surface has the observed directly in CeSn₃.²¹ For CeAl₃, anomalies near $T_0 \approx 0.5$ K have been observed in various thermodynamic quantities, i.e., a flat minimum in the susceptibility $X(T)$,³ a flat minimum in the bulk modulu $\chi(T)$,³ a flat minimum in the bulk modulu
 $c_B(T)$,¹¹ and a pronounced peak in the coefficient of the thermal expansion $\alpha(T)$. This latter quantity is very large, changes sign at $T \sim 1 \text{ K}^{3,22}$ and gives rise to giant negative values of the electroni Grüneisen constant. 2^{3} , 2^{4} It has still to be clarified by experiments on concentrated Ce alloys lacking coherence which of these features, like the $\gamma(T)$ maximum, occurs only in a lattice.

Knowing $\alpha(T)$, $c_B(T)$, and $\gamma(T)$, one can predict the volume dependence of γ by $\frac{\partial \ln \gamma}{\partial h}$
 $\frac{\partial \ln V}{\partial r} = \gamma^{-1} \frac{\partial (c_B \alpha)}{\partial h} T$. The thermal variation of this quantity for $CeAl₃$ is displayed in the inset of Fig. 1(b). Obviously, there are two mechanisms for the volume dependence of γ . At high T, $\frac{\partial \ln \gamma}{\partial \ln V}$ is almost constant and has the sign expected for the single-ion Kondo effect, but at low T there is an entirely new mechanism as indicated by the distinct structure, including a change of sign, near T_0 . This suggests that under pressure the structure in $\gamma(T)$ will become less pronounced since γ should decrease for $T \geq T_0$, but increase for $T < T_0$. Note that the results on (Ce, Y) Cu₂Si₂ are *not* simply an internal pressure effect, since La atoms (larger than Ce) in place of Y (smaller than Ce) cause a similar monotonical $\gamma(T)$ dependence at low T.

It is interesting to speculate why E_F is near a minimum in the density of states in these Kondo lattice systems. One possibility is that the nonmagnetic ground state of the lattice is in fact stabilized by the opening of the pseudogap, and that other systems which do not have the decreased density of states at E_F will have a greater tendency to order magnetically. This could explain the absence of or-'der in these noncubic spin- $\frac{1}{2}$ systems in contrast to recent arguments²⁴ that require higher spin to suppress magnetic order. Further, in the cubic spin- $\frac{1}{2}$ systems like CeAl₂ and CeB₆ the tendenc to open the pseudogap might be weaker as a result of symmetry reasons and, thus, magnetic order might be favored.

In summary, the anomalous temperature dependence of the linear specific-heat coefficient $\gamma(T)$ of the nearly trivalent intermetallic compounds $CeAl₃$ and $CeCu₂Si₂$ can be viewed as a transition, at $T_0 \approx 0.5$ K, from a "single-ion Kondo regime" to a
"Kondo lattice regime" At low temperature coher-"Kondo lattice regime." At low temperature coherence effects of the lattice lead to structure in $\gamma(T)$, which is consistent with a pseudogap structure⁸ within the "single-ion Kondo resonance" at E_F . Finite-field data show that a cooperative low-energy scale persists also in the concentrated alloys, which differ qualitatively from dilute Kondo systems.

We wish to acknowledge helpful conversations with J. Flouquet, P. Fulde, N. Grewe, U. Rauchschwalbe, R. Schefzyk, K. D. Schotte, E. Umlauf, and G. Weber. This work was supported by the Sonderforschungsbereich 65, Frankfurt/ Darmstadt.

Note added.—Recently, the one-particle excitation spectrum of a Kondo lattice has been calculated by renormalized perturbation theory for the Anderson model: see N. Grewe, Solid State Commun. SO, 19 (1984). In fact, this calculation demonstrates the formation of a (pseudo) gap due to coherence.

- 2B. Barbara, J. X. Boucherie, J. L. Buevoz, M. F. Rossignol, and J. Schweitzer, Solid State Commun. 24, 481 (1977).
- 3K. Andres, J. E. Graebner, and H. R. Ott, Phys. Rev. Lett. 27, 1779 (1975).
	- 4J. Flouquet, J. C. Lasjaunias, J. Peyrard, and M. Ri-

bault, J. Appl. Phys. 53, 2127 (1982).

5F. Steglich, J, Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).

6For a recent review, see N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys. 55, 331 (1983).

7N. F. Mott, Philos. Mag. 30, 403 (1974).

 $R. M.$ Martin, Phys. Rev. Lett. 48, 362 (1982), and references cited therein.

9M. Lavagna, C. Lacroix, and M. Cyrot, J. Phys. F 12, 745 (1982), and Phys. Lett. 89A, 154 (1982).

¹⁰C. D. Bredl, H. Spille, U. Rauchschwalbe, W. Lieke, F. Steglich, G. Cordier, W. Assmus, M. Herrmann, and J. Aarts, J. Magn. Magn. Mater. 31-34, 373 (1983).

 $11M$. Niksch, B. Lüthi, and K. Andres, Phys. Rev. B 22, 5774 (1980).

¹²For CeAl₃, we find $\gamma_{\text{max}} = 2.02$ J/mol K² at $T \approx 0.49$ K [Fig. 1(b)], and $\gamma_{\text{max}} = 1.71$ J/mol K² at $T \approx 0.35$ K (not shown). There is less pronounced sample dependence for CeCu₂Si₂, i.e., $\gamma_{\text{max}} = 1.27$ J/mol K² at $T = 0.42$ K [sample No. 10, Fig. 1(a)] and $\gamma_{\text{max}}=1.36$ J/mol K² at $T=0.44$ K (not shown).

3S. D. Bader, N. E. Phillips, M. B. Maple, and C. A. Luengo, Solid State Commun. 16, 1263 (1975).

¹⁴C. D. Bredl, F. Steglich, and K. D. Schotte, Z. Phys. B 29, 327 (1978), and references cited therein.

¹⁵K. D. Schotte and U. Schotte, Phys. Lett. 55A, 38 (1975).

¹⁶A. P. Murani, K. Knorr, K. H. J. Buschow, and J. Flouquet, Solid State Commun. 36, 523 (1980).

i7S. Horn, E. Holland-Moritz, L. Loewenhaupt, F. Steglich, H. Scheuer, A. Benoit, and J. Flouquet, Phys. Rev. B 23, 3171 (1981).

8For a review, see J. S. Schilling, Adv. Phys. 28, 657 (1979).

¹⁹G. Remenyi, A. Briggs, J. Flouquet, O. Laborde, and F. Lapierre, J. Magn. Magn. Mater. 31—34, 407 (1983), and references cited therein.

20See, e.g., K. Samwer and K. Winzer, Z. Phys. B 25, 269 (1976), and references cited therein.

W. R. Johansson, G. W. Crabtree, A. S. Edelstein, and O. D. McMasters, Phys. Rev. Lett. 46, 504 (1981).

22M. Ribault, A. Benoit, J. Flouquet, and J. Palleau, J. Phys. (Paris) 40, L413 (1979).

23R. Takke, M. Niksch, W. Assmus, B. Luthi, R. Pott, R. Schefzyk, and D. K. Wohlleben, Z. Phys. B 44, 33 (1981).

24N. Read, D. M. Newns, and S. Doniach, to be published; P. Coleman, to be published.

¹See J. M. Lawrence, P. S. Riseborough, and R. D. Parks, Rep. Prog. Phys. 44, ¹ (1981).