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Thomson-Scattering Measurements of Ion-Acoustic Fluctuations
in CQ2-Laser-Plasma Interaction
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Space- and time-resolved Thomson scattering has been used to characterize strong
nonthermal ion-acoustic fluctuations in CO2-laser-heated plasmas in the density range
0.8- n/n -2.0. The relative fluctuation amplitude scales as dn/ n-t ' with a level of
dn/n = 15% at a laser intensity I=2.8 x 10'4 W/cm . No saturation with intensity is ob-
served. The wave-number spectrum peaks at a constant k~D —-0.12 over all densities.

PACS numbers: 52.35.Mw

In laser-plasma interaction experiments, ion-
acoustic fluctuations are generated from the ion-
acoustic drift instability' when the electron drift
velocity exceeds the ion-acoustic velocity (u o- c,)
and ZT, /T, ~ 3 where T, and T, are the electron
and ion temperature and Z the plasma ionization
state. These fluctuations have been invoked to
explain nonclassical plasma behavior in absorp-
tion of laser radiation, ' ' generation of energetic
ions and el.ectrons, ' and heat transport of the
absorbed energy. " The magnitude of these ef-
fects depends critically on the saturation level of
the ion wave and on the wave-number spectrum.
Theoretical estimates' ' for the saturation level
cover two orders of magnitude in fluctuation am-
plitude (10 ' ~5n/n ~ 10 '). High fluctuation lev-
els (5n/n = 0.1) have been measured" at selected
values of plasma density and wave number.

This Letter reports the first laser Thomson-
scattering measurements to characterize simul-
taneously, on a single event, the spatial and tem-
poral characteristics of ion-acoustic turbulence
along a density gradient. A preformed plasma
produced by a 4-J, 30-nsec, 1.06-p, m laser pulse
on a carbon target is irradiated with a high-in-
tensity CO, laser (40 J, 1 nsec, d =150 p.m) pulse
along the density gradient (Fig. 1). As in earlier
experiments, ' background plasma parameters are
T, = 100 eV, Z = 3 —4, (n 'dn/dx) ' = 300 t1, m.
Forward scattering (8, = 20') is used to probe
wave vectors k, para'. lel to the density gradient
(k, )l Vn, ll kcos) covering the wave-number range
2.5&10 cm '& k, & 7.0&10 cm ' which corre-
sponds to 0.06 & k, XD & 0.16 for a 100-eV plasma
at n, . The incident probe beam (0.53 tLm) is
brought to a line focus (600 & 100 p.m') parallel
to the scattering wave vector (Fig. 1). The cen-
ter of the line focus is positioned at ~, so that

a)

ol lect ing

optics

arbon
rget

probe in

0.53p.m

b)

.t mm

collecting
optics

C02 laser

focal spot
t 50@,m

0.6 mm
probe beam
0.55 p, m

FIG. 1. Diagram of experiment and Thomson-scat-
tering geometry showing the carbon target, the laser
beam which produces the plasma (g =1.06 pm), and the
CO2 heating-laser beam incident at 90' to the target.
The electric field of the CO& laser is in the scattering
plane. The scattering illumination geometry and the
plasma volume imaged by the collection optics are
shown in (b)..

the scattering volume covers 0.3 ~n/n, & 2.0 in
density. A streak camera records the scattered
signal as a function of position and time (Fig. 2).
The scattering geometry is such as not to collect
any light scattered by ion waves generated by
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FIG. 2. Scattered signal as a function of distance
from target (z) and time (t) as seen at the output of
the streak camera. Attenuation (Att. ) of the scattered
signal is also indicated. The upper trace is the probe
beam used to normalize the scattered power. The
streak camera is triggered by the electrical pulse
from the CO& shaping I'ockels cells. 'This ensures a
jitter less than 50 psec in the triggering of the streak
camera with respect to the CO2 laser pulse and allows
time correlation between different shots. The associ-
ated measured background density profile is shown
below.

stimulated Brillouin scattering" (k, = 2kco,
=1.2&10 cm '). The wave-number dependence
of the scattered radiation is measured by mask-
ing the col.lection optics with a 1-mm slit to de-
fine the collection angle.

The thermal scattering level (no CO, ) is meas-
ured and used as a reference. The thermal fluc-
tuation level (no CO, ) corresponding to wave vec-
tors in the scattering range is' [Gn/n], h„~——1.3
&10 ~ at n, . Interferometry of the preformed
plasma using a 2-nsec, 0.53-p.m probe provides
the density distribution of each event (Fig. 2).
We make the logical assumption that the enhanced
fluctuations are localized in the CO, focal spot.

The enhancement of scattered signal over ther-
mal is given in Fig. 3 as a function of incident
laser energy. Scattered power P, /Ph scales asE"with energy so that 5n/n- E"with no sign
of saturation. Parametric decay" cannot account
for the observed fluctuations because the scatter-
ing vector is normal, to the CO, laser electric
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FEG. 3. Dependence of scattered power on CO2 laser
energy. The scattered signal is normalized to the
signal scattered from the thermal fluctuations of the
plasma in the absence of the CO2 laser.

field. A more likely candidate is current-driven
ion-acoustic turbulence. "

Time evolution of scattered power as a function
of incident energy and position (density) is given
in Fig. 4. One should keep in mind that the fluc-
tuation level is increasing with energy (Fig. 3).
Several points are worth noting. Fluctuations
tend to start near n, . Fluctuations start sooner
and spread out faster at high l.aser energy. Fluc-
tuation lifetime is greater than the l.aser pulse
width at low energies. This is consistent with an
indirectly driven instability like the current-
driven ion-acoustic instability. A similar time
dependence for T, was observed by Gray etak. '
at these flux levels. Their explanation was based
on heat-transport inhibition. Considering a sim-
ple model where heat flux inhibition is caused by
an anomalous collision frequency' which is pro-
portional to (5n/n)', one would expect the in-
creased inhibition at high l.aser energy to main-
tain the T, differential for a longer time so that
the fluctuation lifetime should be longer than at
low laser energy. In fact, the fluctuation l.ife-
time [Fig. 4(b)] decreases. at higher laser inten-
sity to a lower l.imit set by the laser pul. se width
indicating increased damping presumabl. y by en-
hanced generation of fast ions, predicted by the-
ory' at a fluctuation level of fIn/n = 10 '.
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given location, %e also note that simu1ations4'
show ft.uctuations peaking at kXD = 0.1 to extend
from n/n, =1 to about n/n, =0.6. This is also the
subcritical density range where we observe fluc-
tuations (Fig. 4). The wave-number distribution
peaks much below the linear-theory' prediction of
RED= 0.7 and is also lower than. the nonlinear-
theory prediction' of &AD = 0.35 where the higher
wave numbers are damped by trapped ions.

The absol. ute fluctuation level is Gn/n = 15% at
a l.aser energy of 40 J. This fluctuation level
(though not saturated with laser energy) corres-
ponds to the (temporal) saturation level estimated
by the wave-breaking model' for a temperature
ratio T,/T, =4. Sa. turation by scattering of pho-
nons on ions' also l.imits the fluctuation level. to
5n/n = 10% for long-wavelength fluctuations. Re-
normalization theory' predicts the same fluctua-
tion level and parameter dependence as phonon-
ion scattering if fast-ion production is not taken
into account. Including this effect' reduces the
level to &n/n = I.O '.
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