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Anomalous Diffusion in Intermittent Chaotic Systems
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It is shown that anomalous diffusion (i.e., nonlinear growth of mean square displace-
ments) can be caused by a specifically chaotic mechanism. It depends on deterministic dif-
fusion and intermittency and gives rise to mean square displacements which grow asymptoti-
cally like t with 0 & v» I or like t/In t, depending on universality classes.

PACS numbers: 05.40.+j, 47.25.Jn, 64.60.Cn, 66.30.—h

The diffusion processes most frequently found in
nature exhibit a linear increase of mean square dis-
placements for large times. However, anomalous
cases have shown up where the linear evolution is
not obeyed. Such anomalous diffusion has been
observed experimentally, e.g. , in polymer melts'
and (via conductivity measurements) for charge
transport in amorphous solids and in K-hol-
landite, 4 5 a superionic conductor. Monte Carlo
simulations reveal anomalous tracer diffusion in
concentrated lattice gases. 6 The physical mecha-
nisms underlying the theoretical work depend
essentially upon the existence of either disorder7 or
fractal structure. 8

In the present Letter we show that anomalous
diffusion can also be caused by a very different,
specifically chaotic mechanism occurring in com-
pletely ordered and even deterministic systems.
This is the first observation of asymptotically
anomalous diffusion (t ~) in chaotic systems.
The mechanism depends on the occurrence of in-
termittent chaos, " in particular, type-III intermit-
tency as studied by Manneville and Procaccia and
Schuster. '0 With increasing nonlinearity (character-
ized by an exponent z) we find a transition from
normal diffusion (z & 2) to anomalous diffusion
(z & 2) where mean square displacements increase
asymptotically like t' ' ' . For z=2 they diverge
like t/lnt. These results are universal, depending
only on the exponent z. We conclude by discussing
the relevance of our theory to driven Josephson
junctions, where self-generated diffusion has al-
ready been found.

In a previous paper of one of the authors' it was
shown that maps that have discrete translational
symmetry can generate a deterministic diffusive
motion. They describe, e.g. , the large-friction re-

gime of driven Josephson junctions (see below) and
are given by

x, , = f(x,), t=0, 1,2, ...,

where x, is the diffusing variable and f is continu-
ous with the symmetries

f(n+x) = n+ f(x), n integer,

f( —x) = —f(x).
(2)

x, +t=xt+axt' for x, +0 (3)

(a & 0, z & 1). It is known (from nondiffusive
maps) 9'0 that this limiting form causes intermitten-
cy and 1/f noise. We assume that f is smaller than

and has a slope larger than unity in a laminar
range 0 & x & x, and maps parts of the transfer
range x, ~ x ~ —,

' to neighboring cells. A smooth
probability of injection into a neighborhood of the
centers is ensured by some weak requirements. '
Particular examples for Eqs. (1)—(3), which we
consider only for illustrative purposes and for nu-

As a result of Eq. (2) we can introduce cells of
length 1 centered at x = 0, + 1, + 2, ... . Specifying
the map for 0» x» —,

' completely defines it on the
real axis. In all cases discussed so far the diffusive
motion generated by such systems turned out to be
asymptotically normal. '2 '6 Because of symmetry
[Eq. (2) ] the map must have fixed points at
x = + n/2. Here we study a case where the fixed
points in the centers of the cells become marginally
stable (slope = 1). The maps then have the limit-
ing form
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x+ ax', 0 ~ x (x„
l4x —I —2x, I

1 —2x,
f(x) =

2

merical simulations, are

x, ~x~ —, ,

(4)

function of the injection point xo.

T(xo) = (I/xp —2' )/a (z —1). (6)

The distribution 0( T) of residence times is thus re-
lated to the (unknown) distribution P;„(xo) of in-
jection points, 4( T) dT~ P;„(xo)dxo, implying

with z ) 1 and a = (1 —2x, )/2x,'. The diffusion
mechanism can now be understood as indicated in
Fig. 1 where such an example is illustrated. An or-
bit injected at xo in the laminar range of a unit cell
eventually reaches the transfer range and is injected
into the neighboring cell. The residence time Tin a
given cell can be arbitrarily long as xo may be arbi-
trarily close to the center of the cell.

In the following, the distribution of residence
times V(T), Eq. (7), is derived in analogy to the
distribution of laminar times in nondiffusive inter-
mittency that was calculated by Procaccia and
Schuster'o and similarly by Manneville9 and Hirsch,
Huberman, and Scalapino. " With their
continuous-time approximations Eq. (3) turns into
a differential equation that has the solution

The orbit x, leaves the cell when x, ~ —,'. From Eq.
(5) we obtain the residence time Tin the cell as a

'qI'(T) =2a[2' '+a(z —1) T] (8)

Note that this distribution does not possess any fi-
nite moments for z~ 2. According to Eq. (8),
V(T) decays with a power law T '~ ' ' for
T ~. The accuracy of this result has been
checked numerically (Fig. 2).

One can now apply random-walk theory (con-
tinuous-time random walk's). Denoting Laplace
transforms by&(W(T)] = ter(s) one obtains for the
mean square displacement crz(t) = (b,xz(t) )

~ (o'(r)] = p(s)/[s —sp(s) ], (9)

where the transform Q (s) of Eq. (8) is
1

e( T)~ P;„(xo) I dxo/dTI

This is calculated from Eq. (6) and expansion of
P;„(xo) around xo = 0. The zeroth order P;„(xo
=0) =const gives the leading order for T
With proper normalization this leads to

P(s) =

2t 'ab(bs)" exp(bs)
x I' ( —v, bs), z & 2,

1+ (2s/a) exp(2s/a)
x Ei( —2s/a), z = 2.

(10)

1/2 l W(T)

-2-
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FIG. 1. Example [Eq. (4)] for our classes of models
Eqs. (1)—(3). The map is continued along the real axis
according to Eq. (2). As indicated by the staircase an or-
bit starting at x0=0.1 is eventually injected into the
neighboring cell T ( x & ~ .

2
[

3

FIG. 2. Distribution of residence times obtained from
numerical simulations of Eq. (4) with z = 1.5, 2, and 4.
The lines indicate the asymptotic slopes —z/(z —1) ac-
cording to Eq. (8).
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Here v= 1/(z —1) and b=2' '/a(z —1). I" ( —v,
bs) is the incomplete gamma function and
Ei( —2s/a) the exponential integral. The long-time
behavior of the mean square displacement follows
from the small-s behavior of Eq. (9) via Tauberian
theorems, in particular Karamata's theorem'9 for
z=2:

lg o {t)

2-

Z

~ Z

(2 —z)2' 'r, 1& z&2,
(a/2) t/1nt, z = 2,

o t a" sin(harv) t", z) 2.
2vl v

p

The asymptotic time dependence is not influenced
by the details of the map but only depends on the
universality exponent z.

We have performed numerical simulations illus-
trating the approach to the asymptotic regime (Fig.
3). The mean square displacements o.2(r) have
been computed for an ensemble of 1000 orbits gen-
erated by Eqs. (1) and (4) with x, =0.2. o-2(t)
grows linearly for z=1.5 as predicted. For z=3
and z =4 deviations from normal diffusion become
noticeable around r = 103. For later times the
asymptotic exponents —,

' and —,
' are approached

steadily but slowly. This slow convergence is due to
the very infrequent occurrence of intermittent
bursts9 for z ) 2. For z=2 the logarithmic devia-
tions show up only weakly in the upper part of Fig.
3 but can be detected in the lower diagram. In this
plot the t/1nr trend is reflected in the linear increase
above t =103, whereas the curve should remain
constant for normal diffusion (z = 1.5).

The anomalous diffusion found here is due to the
existence of a statistical distribution %'( T) of
residence times with a long-time tail. In previous
theories7 such distributions had to be assumed, e.g. ,
as being due to different residence times at dif-
ferent positions in a disordered medium. In the
present chaotic system we have found a new and
quite different mechanism for anomalous diffusion.
The distribution is brought forth very naturally by a
mechanism that depends on intermittency and
deterministic diffusion and does not require any
spatial disorder.

We finally discuss physical applications of this
theory. Deterministic diffusion has already been
observed in driven Josephson junctions. Their
asymptotic dynamics in the strongly dissipative case
is well described by one-dimensional maps like Eq.
(1). This is because dissipation leads to a contrac-
tion of volume elements in phase space. Thus one
often finds attractors with dimensions close to two,

~ iO

I I

tlcr (tj

3

v z =1.5
z =2.0

11 i'

2- T T~~TT

l I

which can be reduced (in good approximation) to
one-dimensional maps by Poincare section. Recent-
ly such a map has been determined for Josephson
junctions. '4 It even exhibits intermittent diffusion
although of a different type. The requirements for
finding a map like Eq. (3) are weak: Reflection
symmetry (x —x) implies vanishing of the
quadratic expansion term around a fixed point
(x=0). When the fixed point reaches marginal
stability the expansion is given by Eq. (3) with
z = 3, which according to our theory entails
anomalous diffusion with v= —, . In view of their
large parameter space (four dimensional), we be-
lieve that this situation will show up in iosephson
junctions. 2' As an analogy we quote that a (nondif-
fusive) map similar to Eq. (3) has recently been
measured in a Rayleigh-Benard experiment.

FIG. 3. Mean square displacements of an ensemble of
1000 orbits vs time. The log-log plot (top) shows the de-
viations from normal diffusion (slope 1) for z & 2. The
logarithmic correction for z = 2 is revealed more clearly
by the t/o' vs logt plot (bottom). The lines indicate the
asymptotic slopes predicted by Eq. (11).
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After completion of this paper we became aware
of an additional mechanism for anomalous dif-
fusion in nondeterministic systems.
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