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Supersymmetry anti the Bistable Fokker-Planck Equation
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The approach to equilibrium in a bistable system is governed by a small eigenvalue which
appears to be difficult to compute. We show that supersymmetry makes possible an easy
evaluation of this eigenvalue.
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Diffusion of a particle in a one-dimensional, bi-
stable potential provides a useful model to under-
stand the role of thermal fluctuations in driving a
system towards equilibrium. ' The particle moves in
a highly viscous medium so that its inertial reaction
(acceleration) can be neglected. It is acted on by a
force which is the gradient of the potential plus a
random (thermal) force described by Gaussian-
correlated, white noise. Associated with the particle
position is a time-dependent probability density
P (x, t) which obeys the Fokker-Planck equation.
Although there exists a unique, time-independent
equilibrium distribution Po(x), the manner in
which this distribution is reached may be delicate.
With a bistable potential U(x) as shown in Fig. 1,
the particle can become trapped in one of the two
potential wells, and the approach to equilibrium will

take place very slowly at low temperatures.
In this Letter we exploit the correspondence

between the one-dimensional Fokker-Planck equa-
tion with an arbitrary potential and supersymmetric
quantum mechanics. This correspondence allo~s a
simple calculation of the small eigenvalue of the
Fokker-Planck equation, the eigenvalue that con-
trols the rate at which. equilibrium is approached.

We write the Fokker-Planck equation as

8 6 8P(x, t) = —+PU (x) P(x, t),
t x x

where U'= dU/dx and 1/P is proportional to the
temperature. Any initial distribution P(x, t) will re-
lax at very large times to the time-independent,
equilibrium solution

Po (x) = No exp (
—P U (x) ),

where No is a normalization constant. To discuss
intermediate times, we write

P(x, t) =y(x, t) expI ——,'P U(x)),

U (x)

FIG. 1. Shape of the bistable potential in the Fokker-
Planck equation.
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for then f(x, t) satisfies a Schrodinger equation in

imaginary time

tip/Bt = —HQ (4)

where

with a Hermitian, positive semidefinite Hamiltonian
operator

towers of states with degenerate eigenvalues. The
application of Q to a bosonic 'P with only an upper
component produces a fermionic 4 with only a
lower component. The only exception is the
ground state %o. Since A Po= 0, it has no fermionic
counterpart. The Hamiltonians H+ which operate
in the two sectors,

H+ = d2/dx2+ V+,

and

W =-,'PU+a/ax, (6a)
V, = [-,'P U']'+-,'P U". (12)

define bosonic (+) and fermionic potentials ( —):

(6b)

By introduction of a complete set of eigenvectors
(y.),

HAn=l n&n

the general solution to Eq. (4) may be written as

y(x, t) = X„C„exp[—Z„t]P„(x).

The coefficients C„are determined by the initial
distribution. It is easy to see that $0= exp( ——,'P U)
is the unique4 eigenfunction with A.o=0. However,
in the low-temperature limit the first nonvanishing
eigenvalue A. t is exceedingly small since the system
must take a long time to reach equilibrium. It
would appear that a rather difficult (tunneling) cal-
culation is required for the evaluation of A. t. We
turn now to show that supersymmetry yields an
easy determination of A. t.

To put Eq. (7) in a supersymmetric form, one ex-
tends the wave function Q to a two-component
column 'Il and defines

With a bistable potential U(x) [Fig. 1], the bosonic
potential V+ has two wells, but the fermionic po-
tential V has essentially only a single well. The
eigenvalue and potential structure which we have
just discussed is illustrated in Fig. 2.

Now, to calculate the excited (X„)0) levels of
the original Fokker-Planck equation, we may in-
stead work on the fermionic ladder. This is a sys-
tem whose spectrum is much easier to obtain than
is that of the original Fokker-Planck Hamiltonian.
In particular, it is easy to obtain an upper bound for
the small eigenvalue Xt since it appears in the
ground state of the fermionic ladder. We may use
the variational principle with the trial wave function
having only the lower component

(x) = exp( —,'PC (x)).

(9b)

These are nilpotent, "Fermionic" operators, Q2
=0= g 2. The supersymmetric Hamiltonian H„
which acts on II is given by

r

Hss=g Q+QQ = (1+ (10)

Here H+ =3 3 = H is the original Hamiltonian as-
sociated with the Fokker-Planck equation while
H = AA . Thus the upper, "bosonic" component
of 4 contains the previous eigenvectors P„. Since
Q is nilpotent, Q commutes with H„. Hence if W„
is an eigenvector so is Q'P„. Thus there are two

1934

Bosonic Fermionic

FIG. 2. The two degenerate towers of eigenvalues
which arise from supersymmetry. The equivalent
Schrodinger equation bosonic, V+, and fermionic, V,
potentials are sketched beneath their eigenvalue towers.
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The wave function expI —,pU(x)} is annihilated by A and thus would appear to be an eigenfunction of H
with eigenvalue zero. This function, however, is not normalizable. %e obtain a normalizable function which
is continuous in both value and slope by fitting exp( —,p U(x) } to decreasing exponentials. Explicitly, we take

U( —c) + U'( —c) (x+ c), x ~ —c,

&b(x) = U(x), —c & x & d,

U(d)+ U'(d)(x —d), x) d,

(14)

where c and d are variational parameters. We use the force

U'(x) =x(x+ a)(x —b).

In the low-temperature limit of interest, p ~, the variational principle provides the rigorous upper bound

~

&/2

Pab a+ b

6(6~)»'

' 1/2

exp —— (a+ 2b) +3 pa a+b
2 12 0

3 Pb
exp —— (b+ 2a)

2 12
(16)

Note that the eigenvalue is exponentially small as
p ~. On the other hand, near the bottom of the
fermionic well (x —0),

V (x) = ( ,'Pabx)2 —,'Pab. —— (i7)

Thus the low-lying levels are approximately
described by the harmonic oscillator eigenvalues,

A.„=E„"ot ——,'Pab = (n —1)Pab. (18)

[This gives Xt =0 which should be repiaced by the
more accurate Eq. (16).1 The higher eigenvalues
h. „with n ~2 increase linearly with p. Hence, at
low temperatures, only the first two terms in the
sum of Eq. (8) are important in the long-time limit.

Our method can be used in other cases as well. A
particularly straightforward example is the critical
case5 where a=b=0 and U'=x3. We now set
p=1. The bosonic potential V+ = —,'x6 ——', x2 is a
double well whose eigenvalues are difficult to deter-
mine. The fermionic potential V = —,

' x + —', x cor-
responds to a single-well anharmonic oscillator
whose low-lying eigenvalues may be readily com-
puted with the variational principle. With the trial
wave functions P t

= exp I
——,

'
G. tx I and

= x exp( ——,
' n2x } it is a simple matter to find that

the first two nonvanishing eigenvalues have the
bounds A. t

~ 1.38, X2 ~ 4.51. These are to be com-
pared with the results obtained directly from the
bosonic Hamiltonians: A computer calculation in-

volving a 100x100 matrix produces A. i—- 1.37, A. 2

=4.45; a variation method gives Xt —-1.48,
=4.97; a WKB computation yields A. t =1.66, A. 2= 4.70.

In summary, the latent supersymmetry of the
one-dimensional Fokker-Planck equation can be ex-
ploited to obtain an accurate estimate of the very
small eigenvalue in the bistable problem. The su-
persymmetry can also be used to replace a difficult
double-well problem with an equivalent but much
simpler single-well problem.
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